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STATISTICAL STUDY OF TURBULENCE - SPECTRAL

AND CORRELATION COEFFIC~NTS*

By Francois N. Frenkiel

INTRODUCTION

FUNCTIONS

In reading the publications on turbulence of clifferent authors, one
often runs the risk of confusing the various correlation coefficients and
turbulence spectra. We have made a point of defining, by appropriate con-
cepts, the differences which exist between these functions. Besides, we
introduce in the symbols a few new characteristics of turbulence. In the
first chapter, we study some relations between the correlation coefficients
and the different turbulence spectra. Certain relations are given by means
of demonstrations which could be ca3Jed intuitive rather than mathematical..
In this way we demonstrate that the correlation coefficients between the
simultaneous turbulent velocities at two points are identical, whether

i studied in Lagrange’s or in Ner’s system. We then consider new spectra
of turbulence, obtained by study of the simultaneous velocities along a
straight line of given direction. We determine some relations between
these spectra and the correlation coefficients. Examining the relation
between the spectrum of the turbulence measured at a fixed point and the
longitudinal-correction curve given by G. I. Taylor, we find that this
eq=tion is exact only when the-coefficient

is very small.

We find that, in a flow of homogeneous and isotropic turbulence, the
transverse correfition length is equal to half the longitudinal correla-
tion length, and we obtain several useful relations with the other char-
acteristics of turbulence. Neti, we introduce nondimensional parameters
which greatly simplify the calculations. In the second chapter we view
a few experimental results and study the methcd of representing them by

I

empirical eqpations.

*“l&ude statist;que de la turbulence. Fonctions spectrales et
coefficients de correlation.” Office National D1&udes et de Recherches

* A&onautiques (0.N.E.R.A.),Rapport Technique No. ~, 1948. (The publica-
tion of this report, completed in 1942, was delayed by circumstances

m related to the war.)
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The following chapt-ers,which form the“-win part-~of this study, w-

provide all the possible representation of correlation and of spectrum ?

curves; we compare with them the few measW&nents alre@dy made and intend
to”compare .withthem the new measurements which we hope to perform in the
future. We consider therefore this part as q preface to a later report.
The large number of curves will facilitate the choice of equations which
will best represent the experimental points.once the test-results will be___

—

available.

For the representation of a correlation curve by a function, one
might consider the general interpolationmethods which permit, for
instance, giving an approximate representation ofithe~erimental curve
by a gecmnetricalor trigonometrical polynomial. Nevertheless, this crude
method is not favorable because it disregards the Lypigal appearance (bell-
‘shapedcurve) of the measured correlation coefficients. Several experimen-
ters have insisted on the importance of the function R(r) = exp(-fi) fOr
representation of the experimental values. We have learned lately that
there exist certain theoretical reasons for admitting this particular form.
In fact, Prafessor J. Kamp6 de F&iet notified us at his return from his
recent voyage to the United States that J. L. Doob (ref. 1) has demon-
strated, with the assumption that the velocity of a particle is a func-
tion satisfying the following properties, that:

1. The stochastic process is hcmmgeneous in time .

2. This process is a Markoffl process ..

.

3. The law of probability of u(tl),u(t2) is a Gauss law with
two variables.

If all these conditions are realized, the correlation coefficient
between the two velocities ofithe same particle at the instants t
and t + h is of the form R(h) = exp(-Klhl).

This form of the correlation curve which had already been proposed
by H. L. Dryden also represents relatively satisfactorily the experimental
points of the tests made recently by A. A. Khlinske (ref. 2). Thus we
shall begin our representation with the study of this function. But since
these conditions are not rigorously realized, it–is ofiinterest to use the
functions exp(-Klhl)q(h) where Q(h) is a geometrical or trigonometrical
polynomial.

Nevertheless, since the bell-shaped curve brings to mind the classi-
cal function of Gauss, we shall study this function, too. The more so,

%hat is, if one considers the instants tj-< t-2< tn-l< tn for the ~

given values of ‘(tl)~ ‘(t2)} ‘(tn-l)~ ‘he ‘distribution‘f ‘(tn)
depends only on ‘(tn-l); m
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as one sees - when one represents the second-order moment of the experi-
mental correlation curve as a function of the first-order moment - that
(fig. 6) the expertiental points sre dispersed between the points cor-
responding to the functions of the form exp(-Klrl) and exp(-Kr2). We
studied the functions exp(-ICrn) with 1< n< 2, but after having made
& few tests with these curves we stopped using them because they proved
to be rather hpractical. A fifth chapter is devoted to several applica-
tions of a series of Hermite polynomials for representing t~e correlation
law or the spectrum according to the proposition of J. Kampe de F&riet.

We represented in numerous figures the correlation curves and the
turbulence spectra which correspond to the selected functions. Several
applications are made with use of the results of turbulence measurements
in water and in air.

Thus one will nqte the good representation of a transverse correla-
tion curve measured at the National Bureau of Standards (fig. 19) by the
equation of the form

R-y(Y)= -P(-KIY)COS (~Y)

Two other curves measured in this ssme laboratory (figs. 23 and 24), and
also a longitudinal correlation curve of A. A. Hall (fig. 25) are very

well represented by the eqyation R(r) = ~+ (1 - A)COs(~rfleq(-Kllrl).

Other results (figs. 32 and 33) are represented by the func-

tion R(r) = [1+ lujexp(-~lri) or (figs. 37 to 42) by

R(r) =
[ 1
1 + Alr + ~r2 exp(-Kllrl). Interesting results are given by

the function R(r) = A-exp(-K1lr\)+ (1 -A)exy(-~lrl).

The functions derived from Gauss~ function do not give as interesting
results; still, we have been able to represent a few measurements (figs. 74
to 78) quite satisfactorily by the functions of the form

R(r) = Aexp(-Klr2)+ (1 - A)exp(-I@2), and a correlation curve of

E. G. Richardson (fig. 60) is rather well represented by a Gauss curve.

Once the correlation curve is represented by a function, it is easy
to calculate the different statistical characteristics of turbulence by
making use of this function. One can thus determine, for a flow of
homogeneous and isotropic turbulence, the trsmsverse correlation curve
from the longitudinal correlation curve or vice versa. If the two-curves
have been measured in one and the same flow, it till be easy to verify
whether an isotropy of turbulence exists in it. We made several comparisons
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of this type. One will note particularly the rather remarkable results
given in figures Ss’and 57 where the experimental points are perfectly
represented by the correlation functions calculated for a flow of
isotropic turbulence.

“

Finally, we represented the spectrum of turbulence measured at the
National Physical Laboratory (fig. 93) by a curve corresponding to a
correlation function of the form ~(h) = A exp(-Klh2) + (1 - A)exp(-K#t2)

which represents the experimental points better than the curve

~(h) ‘eq(-K1lhl) ‘, ‘---- _used by H. L. Dryden.

The possibility of a rapid calculation of the spectral function, once-
the form of-the correlation”curve has been determined, is highly important
since a graphical calculation based on the experimental correlation curve
is extremely troublesome. —. —.

Since the work for this report has been done in 1*1 and the report
has been edited in 1942, we could not take intu account-the results found
by various investigators with which we have only recently become acquainted.

SYMBOLS
.

..

r
1. General Symbols for Homogeneous Turbulence

%u

Oxyz

‘t

h

~.

$(x,y,z,t)

if(x,Y,z,t)

reference axes fixed in space. If there exists a
mean velocity, the axis ~ is parallel to this
velocity (system of Euler).

reference axes fixed with respect to the center of
a particle. If there exists a mean velocity, the

—

axis Ox is parallel to this velocity (system of
Lagrange).

time —

time interval .

cyclic frequency (equal to frequency times 23c)

value of a scalar quantity at an ‘instant t and at
a point x,y,z

mean component of the quantity $ taken with respect
tu the time, independent~ olYthe physical proce-
dure employed

●

.



turbulent component of the qyantity v

*(x,y,z,t) =W(x,y, z,t) + *’(x,Y,z,t)

o

W(x,y,z,s)ds =~(X,y,Z)

If ~(X,y,Z) = constant, the turbulence is homo-
geneous. One may assume equality between the t-
space averages.

+Tr +x
Mm ~ v(x,y,z,s)ds = lim -&

J
V(s,y,z,t)ds

T-+= = -T x+ w -x

+y
=lhl~ J’ V(x,s,z,t)ds
y+” w -y

+2

J‘2%* -z ‘(x’y’s’t)d

[-’(x,Y,z,t)]2

I

mean square

standard deviation

.
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.

‘:=’?&=

=/ R,

w(xl,Yl, q,tJ *’(x2)Y2, ~2)t2)

/“/-
correlation coefficient

(in the Euler systti) between two fluctuation com-
ponents of a scalar Quantity v? x ,y ,2 ,t

( )

(1 1 1 1)
and $’ x2,y2,z2,t2 . The subscript k depends on

the relation which exists between these two quan-
tities. For instance

l?(x) =R.&(x) =

-~(s)ds correlation length

if’(o,Y,z,t) v-’(x,Y>z>t)

/~{=-

-“

in Ner’s system ~

f:(u) = f:(m) spectrum of turbulence in Euler’s system. Represents
the contribution of the oscillations of cyclic fre-
quency u to the mean square

T[Y’(%Y,%t)

This spectrum may be obtained by harmonic analysis
of the-curve whi-tigives V’(x,y,z,t) as a f&ction
of one’of the coordinates.
on the curve from which

J

= fw(6)d8 = ~

OK

between two fluctuation

the
The-subscript k depends
spectrum derives.

“in the Lagrange

components of a

system

P
scalar

qllantity v’(x~,yl)zl)tl) and *’(~, y2,Z2,t2).

The subscript k depends on the relation existing -
between these two quantities.
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&‘f” &(s)dso

v

U,v,w

ii=u

:=0

i?=o 1
v’

2* Symbols

u’ -1=U-u

v’ =V
w’ =W

~

A

r

V,L

V,T1

correlation

spectrun of
sents the

length in Lagrange’s system

turbulence in Lagrange’s system. Repre-
contribution of the oscillations of

cyclic frequency m to the mean square

~’ (x,Y,z,t)l2

This spectrum may be obtained by harmonic analysis
of the curve which gives V’(X,Y,Z,t) as a func-
tion of one of the coordinates.
depends on the curve from which

derives.
J

‘fv(6)d6=l

o “I(L

The subscript k
the spectrum

for the Study of the Statistical Relations

Between the Para13el Velocities

instantaneous

components of

mean velocity

velocity

the instantaneous velocity

of the flow

turbulent velocity

components of the turbulent velocity

direction of a strai@t line

measured distance in the direction A

components of the turbulent velocity parallel and
perpendicular to the direction A
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.

R correlation coefficient (see table I)
&

f(u) spectrum of turbulence-”(see table I)

r.

1 coordinate at which the correlation coefficients

‘o between the stiultaneousvelocities RA(r), Rx(x)

Yo
or %(Y) become zero forthe-”first time (fig. 2)

~pp) = ‘oJ I
RA(s)ds

o
“apparent’’correlationlength represented by the

~(ap) .

J

area bounded by the-positive part of the cor-
‘0 ~(s)ds

o
relation curve measured up to the first point
for which R = O (fig. 2(a))

~(ap) = ‘O

f J
o ~(s)ds

~ _ ~A(ap)
~–

LA

XX=*
Lx I

ratio of “apparent~’correlation length and true
correlation length .-

1[Lx‘f” s2fx(s)ds
o

[iFly=J“ 1s2fy(s)ds dispersion of a turbulence spectrum
o

J[~]t‘fms2ft(s)ds
o

.—

.
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Nondtiensional
*

~L,PT,P,Pv

E,EV

~J~v

length representing the size of the smallest eddies
responsible for the energy dissipation, in the
study of the simultaneous turbulent velocities,
in Ner’s system

~~e ~orrespo~ing to the d~ension of the smallest
eddies responsible for the energy dissipation in
the study of the turbulent velocity at a fixed
point as a function of the time in Ner’s system

symbols

5(:) = R(s)

(P(Q)

standard deviation of a spectnun of turbulence

dimensionless variables obtained by dividing r, y,
z, or h by the corresponding correlation len@h
(see table I)

correlation coefficient given as a function of a
dimensionless variable (see table I)

quantity representing the cyclic frequency in dimen-
sionless symbols (see table I)

turbulence spectrum in dimensionless symbols (see
table 1)

coordinate for which the correlation coefficients
BY(Y) become zero (fig. 2(b))
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~O(ap)
‘-

~ (ap) xO
o ‘qGi

/
(ap)

70
‘$%

J

[- 1.~(ap) ~n

.

v

length r, x, or y referred to the apparent

correlation length LA(ap)

(fig. 2)

, ~(aP), ~(ap)

coordinate for which the correlation coefficients R4,
R-x$ ‘r ~ given as functions of P(ap), ~(aP),

q(aP) become zero for the first time .

minimum value of the correlation coefficient ~A(p)

value of p to which the mink- correlation coef-
ficient corresponds When the c~relation curve
represents S as a function of p

p(ap) to which the minimum correlationvalue of
coefficient

represents

[1~A - maximum value

[dQ cpmax Value of ~.

is maxhn,un

corresponds when the correlation curve

~ as a function of p(ap)

()
of the spectral function TA QA

—

()
for which the spectral function (pAOA

●

.

.
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[3]2 =Jm .%2(s,.s

(K) = m

J
S%A( S)ds

‘A ‘o

[1
~(K) (a-p) I ‘O

J‘XK+l, O
A

~ (K) =
J

‘K
4 S q(s)ds

o.

k

1

lX=L
&

‘“%

‘t=t

K

n

s

.

11

dispersion of the spectrum Q2 (Ql). The suh-
11Itscript 1 corresponds to that of Ql as

a function of which the spectrum is repre-
11 11sented, and 2

moment of order K
correlation curve

sK~A(s)ds moment

to the subscript of ’92

of the area bounded by the

u

of order K of the area
- bounded by the “apparent!’corre-

(
lation curve up to the first

value QP) = o)

moment of order K of the area bounded by the
spectral curve PA(QA)

coefficient representing the dtiension of Ehe
smallest eddies responsible for the energy
dissipation by turbulent viscosity

3. Miscellaneous Symbols

coefficient of viscosity of a fluid

energy dissipated by turbulent viscosity per
unit volume

constant integer

variable integer

integration variable

“
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.

I
c

m

A

B

a

P

e

log(a)

exp(a) = ea

coefficients used for representi~ the equations of
the correlation curves

base of the Napierim -logarithms.

logarithm with the base e
—

symbol used for simplifying writl.ngthe equations
—

,a

erf(a) = ~
J

— ——

GO
exp(-s2)ds numerical-function the ~lue of which is to

be found in the tables —
.

[ .1H2n(a) . ‘-l)n ‘a)! ~-2La2+&nbD-1~.a4- .-. ,
2!

,. Hermite
2n n: 4:

w
polynomials
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CHAPTER I

THEORETICAL CONSIDERATIONS

1. Correlation Coefficients

The study of the turbulent motion in a fluid flow requires knowledge
of the amount of displacement velocities of the macroscopic particles by
groups of molecules the velocity fluctuations of which present a similar
appearance. One of the most .importantcharacteristics of a turbulent
motion is the correlation coefficient which allows numerical definition of
the similarity of the fluctuations in velocity and better visualization of
the size of the macroscopic particles.

The mathematical definition of a correlation
scalar functions of time v:l and ~~2 is given

coefficient between two
by the expression

(1)

:
in which h is a time interval which may be equal to zero when the cor-
relation between two simultaneous functions *’l(t), *’p(t) is being
studied. The bars represent the averages obtained from measurements made
at different instants; all other conditions

J

-I-T
V’I(t) = lial *

T-W -T

and

. r+T

are equal, though. Thus

$’l(s)ds

I

~’l(s)~’2(s +h)ds

In this memorandum we study only the

J

+T
lim 1

a -T
Y(x,y,z,s)ds

T-m

In order to simplify the study still.
averages are equal to the space averages,

.

homogeneous turbulence for which

=Cp(x,y,z) = Cte

more, we assume that
whether these latter

the time
are taken
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in the entire flow domain or only along an infinite straight line
arbitrary direction. One will have for the axes Ox and Oy, in
cular, the relation

*’(x,Y,z)t) J
+T

= lim
& V’(x,y,z,s)ds

T-m -T –

J
+x

=liml z -x

+’(s,y,z,t)ds
x+ m

+y
= 1~ * J ~’(x,s,z,t)ds
Y-m -Y

.

of
parti- *

(2)

Thus the averages which occur in the definition of the correlation —
coefficient may be taken in still another manner: by”repeating the meas-

‘ement ‘f ‘4’’1*’2at different points of the flow, all other conditions, .

though, being eqml. —

The turbulence is considered from the yoi”ntof view of Ner if one “
studies the velocities at the flow points without concerning oneself about
the particles which are situated at these points at the instant of the
measurement. The turbulence is studied from the view point of lagrange
if one follows the particles in their motions and notes their velocities
without concern far the location where they are place-d.

(a) System of Euler.- Assume two particles A and B (fig. 3) the cen-
ters of gravity of which are, at the instant t, at the points P and Q,

—

pl,acedon a straight line of direction A,at a distance r. The mean
velocity of the flow is ii= U, and the turbulent velocities of these
particles V’A(t) and V’B(t) are equal to what we call abbreviatedly

velocities at the points P and Q: V’P(t) and V’Q(t). After a time

interval tl - t the particles will have left the points P and Q,

after having described trajectories which depend on the joint effect of
the mean velocity and of the turbulent velocities of the two particles.
At the instant tl two other particles C and D =e to be found at

the points P and Q. The velocities of the particles A and B are
V’A(tl) and V’B(tl) and are different from the velocities at the

points P and Q: V’p(tl) = v’c(t~) and v’Q(t~) =-V’D(tl). At the

instant t2, the particles C and D, in turn, will “alsohave left the

points 1? and Q, and will be replacedby two other particles: E and F. “
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In order to obtain in
two simultaneous turbulent
points P and Q without

Ner’s system a correlation coefficient between
velocities, one studies the velocities at the
considering the particles situated then at these

points. This coefficient is given by the expression

v’p(t)v’Q(t)

/={=

In order to obtain the averages which occur in this expression, one
recommences the measurements at different instants. In the average

v’~(t)v’Q(t) one will thus take into account the products v’+)v’Q(t))

“P(tl)v’Q(tl)’ V’p(t2)V’Q(t2), etc.

Since the the averages are supposed to be equal to the space aver-
ages, one can obtain this correlation coefficient by another method. One
makes all measurements at the same instant t and calculates the products
of the turbulent velocities at numerous pairs of points placed on straight

. lines parallel-to A, at distances r, such aS v’p(t)v’Q(t), v’R(t)v’s(t),

etc. These products will serve to determine the average v’p(t)v’Q(t)o
s One may consider the velocities of the points situated on the sine-straight

line as the points P and Q, or on an entirely different straight line.

L L
Assume V1 and V’

A,P A,Q
to be the components of simultaneous tur-

bulent velocities in the direction of A and V’ATP, V’ TA,Q
the compo-

nents perpendicular to A, located in the ssme pl&e. One will have two
correlation coefficients in this Euler system (fig. l(a)).

T V’ATO

‘:(r) ‘ki?i- ‘:(r) ‘&’m “)

> Y

The correlation coefficients between the parallel and the perpendi-
cular turbulent-velocity components at the points P and Q (fig. l(b))
are given by

RA(r) R:(r) =

“Ajp “A,Q

/’- i-

“A,P “A,Q

fim

,

.—
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direction A.
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.

R&) abbreviatedly: the correlation coefficient in the .- *-

If A coincides, in the relations (3), with the x axis, parallel
to the direction of the mean velocity (fig. l(c)), one will write

R:(r) =R~(x) =Rx(x) and R:(r) = R!(x) (3’)
u A u A ._

Rx(x) is the coefficient of longitudinal correlation between the
longitudinal turbulent velocities, and w shall call”it”abbreviatedly:

longitudinal-correlationcoefficient. R;(x) is the longltudinal-

correlation coefficient between the transverse turbuIent

When A coincides with the y-axis perpendicular to
the mean velocity, one has

velocitieO.

the direction of
.—

u J < a -J

where ~(y) is the transverse
c

-correlation coefficient between the longi-

tudinal turbulent velocities - we shall call.it transverse-correlation

coefficient - and Rv(y) represents the c=fficient of transverse cor-
Y

relation between the transverse velocities.

One may define, in Euler’s system, a correlation-coefficientbetween
the turbulent velocities at the same point but at two instants t
and t +

One

average

h. This coefficient is give; by the expression

V’p(t)v’p(t+h) —

~=~-

obtains the averages by varying the initial $nstant t. In the ._

v’p(t)v’p(t + h) one will thus take into account the products

v’p(t)V’p(t + h)) V’p(tl)V’p(tl+ h). Applying eqyation (2), one may

form the means by measuring the velocities at two instants t and t.+ h
only, but taking the measurements for an infinite number of points. Tn
this case the products V’p(t)V’p(t + h), V’Q(t)V’Q(t + h), etc. would

.-

occur in the calculation of V’p(t)Vfp(t + h). —
.
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Studying the correlation between the components of the turbulent
velocities parallel to the direction of the mean velocity, we shall have

which we shall call abbreviatedly: correlation coefficient at a fixed
point. For the components perpendicular to the direction of the mean

velocity, one will have the coefficient R;(h).

The correlation coefficient (4) has been studied by taking a point
fixed with respect to space. One may also determine a correlation coef-
ficient for a point being displaced with the mean velocity of the flow,
and one will have

~(h) = u’(x,y,z,t)u’(x + Uh,y,z,t + h
~~ (5)

1[ 2
11[(u’(x>Y)z>t) U’ x+~,y,z,t + hj2

This coefficient, as also the correlation coefficient ~(h) between “

the transverse components, appertains to a pseudo-Eulerian system.

(b) System of Lagrange.- Let us now study the correlation coefficients
of Lagrangefs system. Assume Cld1A#3 to be the coordinate sxes the

origin of which is constantly located at the center of gravity of the
particle A and which are situated so that the axis ml is always

parallel to the direction A. The correlation coefficient of the Iagrange .
system between the simultaneous turbulent velocities of two particles
placed on a straight line in the direction A, at a distance r, will be

where a, ~, 7 are the direction cosines of the straight line A.

In the average V’A(O,OjOjt)V’(~,~rj~,t) products like V’A(t)V’B(t),

v’&l)v’G(tl)) “A(tl)v’H(tl)> ‘tco will occur. With the assumption

that the averages with respect to time are equal to the averages one would .
obtain if one made an infinite nmber of measurements at the same instant t,-
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.

which smounts to supposing the existence of an ergodic principle, one may .-

obtain VtA(Ojo,Ojt)V’(arj@?j7r>t) in another manner: one takes the i

averages of.the products of turbulent velocities of pairs of particles
placed, at the instant t, on straight lines of direction A and at dis-
tances r so that, for instance, V’A(t)V’B(t), V’K(t)V’L(t), etc. one

now has the eqmlities V’A(t)V’B(t) = v’p(t)v’Q(t) and

V’K(t)V’L(t) = v’R(t)v’~(t). Consequently; the correlation coefficient.-
between the simultaneous turbulent velocities of the particles placed on
a straight line in the direction A and at distances r is obtained in
the same manner as the correlation coefficient between the simultaneous

—

turbulent velocities at the points placed on a strai~t line of the same
direction and sit~ted at the same distance. When the turbulence is

—

homogeneous, the correlation coefficients between the simultaneous turbu-
lent velocities for a given direction and distance are the same, whether
the study is made in E@er’s or in Lagrange’s system.

sme

RAjE(r) = RA,L(r) (6)-.

The correlation coefficient between the turbuleni&velocities of the
particle is given by the expression —

v’~(t)v’A(t +h)

where the average is taken by varying the initial instant t. Therefore,
the products V’A(t)V’A(t +h), V’A tl V’A(tl + h), ~ong others, wi~

OCCUr h vfA(t)v’A(t + h). This correlation coefficient may be obtained

also by studying the turbulent velocities of an infinite number of parti-

V’A(t)V’A(t +h)cles at two instants t and t + h only. The average

will then be calculated with the products V’A(t)V’A(t + h),

vl~(t)vlB(t + h), etc. Thus, if one has the equality

V’A(t)V’A(t + h) =V’p(t)V’p(t + h), one will, on the_gtherhand, have

in general the inequality V’B(t)V’B(t + h) +V’Q(t)V’Q(t +-h). Conse-

quently, the correlation coefficient between the turbulent velocities
at a fixed point (system of Euler) and the correlation coefficient between
the turbulent velocities of the same particle (system of Lagrange) for the
ssme time interval are not necessarily equal when the.turbulence is
homogeneous.

●

.
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& The correlation coefficient between the components (parallel to the
direction of the mean velocity) of the turbulent velocities of the same
particle A, at two instants t and t + h, willbe equal to

,

u’A(t)u’A(t + h)
RtL(h) =Rt’(h) =

/Z/~ ‘7)

and we shall call it abbreviatedly correlation coefficient in the Lagrange
system. The smalogous correlation coefficient between the components per- ,
pendicuhr to the direction of the mean velocity will.be designated by
..

R&b) ●

(c) Homogeneous and isotropic turbulence.- In the preceding section
we have assumed that the turbulence Is homogeneous, that is, that a trans-
lation of the axes does not produce a change in the value of the averages.
If one assumes furthermore that the turbulence is isotropic, a rotation
of the axes will not have any effect, either, on the value of the averages..
Hence there result the equalities

.
(8)

2. Spectra of Turbulence

The turbulent energy of a fluid medium may be considered as the sum
of the energy of s&ple harmonic vibrations of different frequencies. The
character of the turbulence will be cmnpletely defined if one knows the
total turbulent energy and the proportion of energy corresponding to every .
frequency, that is to say, the spectrum of turbulence. If, in the study
of a flow, the observer displaces himself with the mean velocity of the
flow, it is easier to study the spectrun as the energy distribution as a
function of the wave length. Every turbulent medium may have spectra
peculiar to it which win not be similar to the spectra of another medium
except for the particular cases where for instance the causes which pro-
duce the turbulence are similar.

One can see an analo~ between the spectrum of turbulence and the
spectrum of light. It must however be noted that, in the case of turbu-
lence, the spectrum may be subject to a transformation which does.not
directly depend on external causes but which is due to the production of
the small eddies initiated by the Im?ge ones. The spontaneous decrease

. in intensity of the longitudinal turbulence downstream of a grid is one
of the consequences of this phenomenon.
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.

order to explain what the different spectra which we shall intro-
this study are representing, we shall assume “availabilityof a

measuring apparatus capable of recording the components of the turbulent a

velocity at every instant and simultaneously for several particles. Let
one recording represent the values of the longitudinal cmnponents of the
instantaneous velocities of the particles which are at a given instant
situated on a straight line parallel to the direction of the mean velocity.
The longitudinal spectrum of turbulence may”be detemiined by making a
harmonic analysis of such a recording. Instead of studying the distribu-
tion of the simultaneous velocities along an infinite straight line, one
can take several recordings for straight lines of a length which is suf-
ficient to make the correlation corresponding to this length negligible.
For each recording, one makes a harmonic analysis and then determines the
mean distribution of the longitudinal turbulent energy (proportional to

=) which corresponds to this spectrum. Thus, the longitudinal spectrum
of turbulence fx(u) will be obtained. By recording the longitudinal com-

ponents along the straight lines located in a plane perpendicular to the
direction of the mean velocity, one obtains the transverse spectrum of
turbulence fy(m).

If one makes the harmonic analysis of a recording which represents .

the longitudinal component-of the turbulent velocity at a fixed point as
a function of the time, one obtains the spectrum of G. I. Taylor ft(u).

These three spectra correspond to Eulerts viewpoint.
.

The recording which gives the longitudinal
velocity at a point which is displaced with the
leads to a spectrum of a pseudo-Werian system
following the mean motion fro(u).”

component of the turbulent
mean velocity of the flow,
which we Cdd “spectrum

Finally, one obtains a spectrum in the Lagrange Eystemby taking as
a basis a recording which gives the fluctuations of the longitudinal com-
ponent of the turbulent velocity of a particle. This spectrum will be
called spectrum of J. Khmp~ de F&iet ft,(u).

In an analogous manner, one may obtain spectra which give the dis-

tribution of the transverse turbulent energy (proportional to ~)by
starting frmn the recordings which represent the fluctuat~ons of the
transverse component of the turbulent velocities. Thus, one till have
the spectra which willbe designated by

f;(u)) f;(u)) f:(u) f:(o)

To
far are

our knowledge, the only direct measurements
measurements of spectra of G. I. Taylor.

. —

fv
tL

of spectra made so
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If the turbulence is homogeneous and isotropic, there correspond to
the equations (8) the relations

fx(u) = f;(u)

3= Rebtions Between the

f~(m) = f:(u)) (9)

Spectra of Turbulence and

the Correlation Coefficients

In reference 5, G. I. Taylor studies the rektion existing between
the spectrum of turbulence measured at a fixed point and the correlation
between the simultaneous longitudinal velocities at two points situated
on a straight line parallel to the direction of the mean velocity (longi-
tudinal correlation).

Assuming that the turbulent velocity is very small relative to the
mean velocity (ref. 7 - equation (7)), he finds that the spectrum and the
correlation are determined from one another by Fourier transform, according
to the equation=

RX(X, =~mcos(~)ft(s)ds

(lo)

(n] m

Taylor~s calcdation may be applied for determining the relation
between the longitudinal spectrum and the longitudinal correlation, but
in this case it is not necessary to make a hypothesis concernhg the
magnitude of the turbulent velocity. We obtain thus equations analogous
to those of Taylor

‘x(~) =+~mCOS(’@Rxr13,&3

Rx(x) ‘~m cos(~)fx(s)ds

(12)

(13)

“

.
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Likewise, one may write for the transverse spectrun-and the transverse
correction the equations

fy(u, = AJ” COS*)RY(S,.S (14)

Ry(Y) = fo” cos(~)fy(dds (15)

Study of the turbulent velocities at a fixed point in mace will lead
to the equations

J
co

ft(m) =: cos(aw)Rt(s)ds
o

f

m
Rt(h) = cos(sh)ft(s)ds

o

which give the relation between the spectrum of G.
relation at the fixed point.

(16) —

(17) -:—

I. Taylor and the cor-
8
—

Comparing the experhental spectrum ft(m) with the one obtained by
application of equation (10) to the correlation curve Rx(x) (ref. 7 -
fig. 1), and inversely, making the comparison between the correlation curve
and the one given by equation (11) starting fr.ornthe spectrum (ref. 7 -
fig. 2), Taylor has found that the points calculated by Fourier transform
are very satisfactorily located with respect to the curves. Applying (10)
and (12), we find .—

ft(u))= fx(u) (18)

and (11) and (17) give

Rt(h) = Rx(hU) (19)

This comparison does not verify in general the e~ctness of the equa-
tions (10) and (n) as one might be tempted to believe, but only the fact
that in this particular case the spectrum measured at a fixed point and
the longitudinal spectrum are identical.

.
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A. A. Khlinske and E. R. van Driest have made measurements of cor-
. relation coefficients between the transverse turbulent velocities in

water (ref. 14). Comparing the correlation curve between the simultaneous

velocities R~(hu) with the curve for a point fixed in space R:(h), they

find that the two curves diverge more and more when h (or x) increases
(fig. 4).

This is easily understandable. Thus we consider a turbulent flow of
the mean velocity U. Assume two points P and Q located on a straight
line parallel to the mean motion, separated by a distsmce x, with Q
downstream of P. The correlation coefficient between the parallel com-
ponents of simultaneous turbulent velocities at these two points is Rx(x).
We assume now that P is displaced with the mean flow. After a ttie

interval h = ~, the point P will be at Q. Let ~(h) be the correl-a-

tion coefficient between the parallel components of the turbulent velocity
at a point which is displaced with the mean velocity. The correlation at
a point fixed in space (here the point Q) depends on these two correla-
tiorYE. If ~(h) = 1, the two coefficients ~(h) and ~(hU) are eq~.

.
Since the correlation ~(h) diminishes in general when h increases,

the coefficients ~(h) and Rx(hU) will differ the more, the larger h
& will be.

The correlation curve ~(h) obtained by E. G. Richardson (ref. 16)

following the mean flow of the water does not correspond, either, to the
curve Rx(x) (fig. 5). Although for this experiment no correlation curve

at a fixed point is available, one may say with certainty that - like in
the tests of I@linske and van Driest - an important difference till exist
between ~(h) and Rx(hU) because ~(h) decreases appreciably even

for

one

smll values of h.

For these two
will thus have

unless h is very

Consequently,

series of experiments made in water (refs. 15 and 16),
the inequalities

R:(hU) #R;(h) Rx(h@ #Rt(h)

small.

the eqmtions (18) and (19) which are verified for
the tests studied by G. 1. Taylor (ref. T) will not be verified for these
two test series. The equations (10) and (n) are therefme not exact in
these cases.

.
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One may assume that the two curves Rx(hU)

cal when the correlation following the mean flow
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and Rt(h) are identi-

%(h) remains very

large up to,values of h =; to which corresponds a negligible correla-

tion between the simultaneous velocities. This amounts to imposing three
conditions:

(a) ~(h) must decrease very slowly, that is, the radius of ctia-

ture at the peak of the curve representing this

large, and the second derivative at the origin

absolute value.

coefficient must be very
d~(0)

must have a small
~2

(b) When x increases, Rx(x) must become rapidly negligible so

that to small values of this coefficient still correspond coefficients
~(h) of the order of unity. For the correlation curves, the negative

part of which is negligible, this may be expressed by requiring that the

correlation length

(c) Finally,
to large values of
high.

Thus one will

—.

% ‘fo”Rx(s)ds be very small.

it is necessary that small values of h correspond
x or, in other words, that the mean velocity is—

have the general condition that the coefficient

L.qd%Jo)
--~ — (20)
“v &hd

must be.very small. The value of this coefficient could serve as a
criterian of whether the equations (10) and (11) may be legithately
employed.

In the case of the tests studied in the-references 5 and 12, no
curves ~(h) are at disposal, and the valtieof (20) cannot be calcu-

lated. In contrast, hit”is possible to comptie the values of the ratio ~

which in the tests studied by Taylor varies between 0.022 and O.0~ second
and is in Kalinske’s and van Driest’s experiments equal to 0.118 second.

Because the nuniberof tests made is insufficient, one can only say,
in an entireJy arbitrary manner, that Taylorts eqyations may be considered

exact when the ratio & is of the order of 0.CX)5second, and one must “-.
u

expect that they will not be verified if this ratio is much larger.

.
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.

Studying the turbulence from Lagrange~s viewpoint, J. KAmpe’de F&iet
has obtained (ref. 3) the relations.*.

rm

rtL(0) s ~ COS(UM)RtL(S )ds

‘o

(21)

J~L(h) = m (22)cos(sh)ftL(s)ds
o

which determine the correlation between the longitudinal turbulent Veloc-
ities of the same particle at two instants t and t + h, with the initial
instant t being variable.

4. Equations Capable of Representing the laws of Correlation

and the Spectral Functions

It is not possible to determine a general law for the spectral func-
tion. However, it is convenient to represent the spectral function in
the form of a simple equation which evidently can be only an empirical.
expression. Instead of representing the spectrum by an equation, one
may represent the correlation curve which can be more easily determined
experimentally than the spectrum.

For representing the correlation law, the National Bureau of Standards
has suggested (ref. 11) use of the relation

Ry(Y) ()=exp-~ (23)

J. K&m& de Fe’rietstudies (ref. 3) a certain numiberof spectral functions
which lead, for the correlation law among others, to the law of Gauss

and to a law similar to the one given in the reference 11.

()~-(h) = exp -~

(24)

(25)
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.

These laws are such that the correlation coefficient remains con-
stantly positive. However, several experimenters obtained negative coef- ,
ficients by measuring the correlation between the turbulent velocities
at two points relatively far apart. This form of the correlation law is
an indication of important changes in the general character of the
phenomena due to turbulence, and more particularly in the turbulent dif-
fusion. Therefore it will be useful to dispose of the correlation curves
which yield negative correlation coefficients.

The correlation function Rt(h) and the spectral function ft(~)

are connected by the equation —

~(h) =Jm cos(sh)ft(s)ds
o

(17)

But there exists a very tiportant difference between these two functions.
Actually, it is necessary and sufficient that a function, in order to be
capable of representing a spectrum, satisfies the conditions

J
m
ft(s)ds = 1

0

(26)

(27)

In contrast, it is difficult to recognize whether Rt(h) is a cor-

relation function, that is to say, whether it is the Fourier transform
of a positive function. These functions form the class of “positive
definite” functions w?nichhave been the object of-numerous studies, in
particular of the fundamental report of S. Bochner (ref. 1.2). Since the
criterion formed by the necessary and sufficient conditions which
S. Bochner presents is not easily manageable, we are, in general, con-
tent with an examination whether the functions we intend to select
satisfy the following four conditions which are neces8ary but not
sufficient

J
m
Rt(s)ds > 0

0

Mm ~(h) =1
h-+0

(28)

(29)

(30)

.

*-
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.

Mm Rt(h) = O
h-+m

.

One may, moreover, require that the first derivative of
tion f~~tion be zero for h = () ~fiich- with equation (30)
account - will give

27

(3U

the correla-
taken into

(32)

This inequality is not verified for
chapter 111.

After having assumed a function for

the functions studied in

representing the law of correla-
tion, one can calculate the spectral function by making a Fourier transform.

In order to determine directly the eqmtion which can represent the
spectral function, one will, beside the equations (26) and (27), also set
up the conditions

J

m
lim ft(o) =: Rt(s)ds (33)

0+0 o

lhl ft(u.))= o (34)
u.)+m

For each of the functions suggested for representing a correlation
curve or a spectral curve, the coefficients will be limited in such a
manner that these conditions will be verified.

All conditions given for the correlation law ~(h) and for the
spectrum ft(u) can be applied also to the other spectra and correlation
laws. In this case, one must replace, in the equations (26) to (34), the

expressions h, Rt(h), ft(~) by ~> RX(X), Ufx(m) or by ~~ Ry(Y)~

Ufy(m) if the correlation between the simultaneous longitudinal turbu-
lent velocities is studied, by h, ~(h), fro(m) if the turbulence

along the mean flow is studied, and by h, ~L, ‘tL(~) if the turbu-

lence is exsmined from the viewpoint of Lagrange, by studying the fluc-
tuations of velocity following the particles.
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5. Theoretical Equations in a Flow of Homogeneous

Th. I&”&l
homogeneous and

and Isotropic Turbulence

has demonstrated (ref. 10) that one has in a flow of
isotropic turbulence

dRL(r)
Rfi(r)= R:(r) + ~ r ~

Applying the equations (3’) and (5”), one finds

RY(Y) =
CIRx(y)

RX(Y) +$Y~

.

.

(35)

(56)

where Rx(y) represents the correlation law Rx(x) in which the x

has been replaced by y. This equation gives the relation between the
longitudinal and the transverse correlation for the longitudinal turbu-
lent velocities.

Application of the equations (31) and (3”) yields for the correla-
tions between the transverse turbulent velocities the relation .

R;(x)
rev(x)

=Rj(x)+~x~ (36’ )

Integrating the differential eqyatiou..withthe second member (36)
and calculating the integration constant-by means of-the condition (31),
one finds the longitudinal correlation as a function of the transverse
correlation

x
Rx(x) =3

J%
S (s)ds

X2 ()

.-

(37)

The tensor equation of K&&n (ref. 10, equation (1)) permits cal-
culation of the correlation RA between the longitudinal turbulent
velocities at two points placed on a straight line of arbitrq direc-
tion A, as functions of the correlations Rx and ~. One obtains

RA (/”&) = ‘2

2?
~ (-)+& tiy(~) (38)

x+

or
or

One may represent- RA as a

of the transverse correlation
(37)●

functionof the longitudinal correlation -

alone, by applying the eq~tions (~)
.
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Equation (13) gives

29

mx(x, .J-”mCOs(.)fx,s)dbd =J’om ..+)fxQds

and, taking the condition (30) into account, one obtains

Mm ~(x) = o
x+ m

As a result, one finds-by integrating the two members of equation (36)
the very important relationz

In a flow of homogeneous
transverse correlation equals
correlation.

~=+& (39) ‘

and isotropic turbulence the length of the
half the length of the longitudinal

In the same manner one obtains by integrating the equation (36’)

Lv=~Lv
x 2y

Replacing I&s) in equation (14) by its value
taking (12) into account, one finds the equation

fy(cD)
dfx(m)

=*fx(&*~ ~

which gives the transverse spectrum as a function of

(39’ )

given in (36), and

(40)

the longitudinal
spectr& for the longitudinal turbulent velocities, and applying now the
eqmtions (9), one obtains the relation between the spectra which give
the distribution of the transverse turbulent energy

(40’ )

%’his report was ready for publication when we learned from the
memorandum of K. Wieghardt in the Luftfahrtforschung of February 28, lg41,

1

that this relation had already been demonstrated.
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Integrating the differential eqution with the second member (40)
and determining the constant by
tudinal spectrum of turbulence,

fx(u))=

the equation (33), one finds the longi-
the expression

(41)
~u s-

As G. I. Taylor has shown (ref. 6), the mean energy dissipated by
turbulent viscosity in the unit volume of a flow of homogeneous and
isotropic turbulence is equal to

?
7= ~~ vu’

~2

where A is a length representing the dimension of the smallest eddies
responsible for the dissipation. This length is linked to ~(Y) by
the relaticm

[11 ~ 1 - %(Y)
~=y- ~

-.

When a parabola which passes through its peak is superimposed on
the transverse-correlation curve, A is the abscissa of the point of
intersection of the parabola with the y-axis.

One may also write (ref. 10) the relation

d2Rx(O) ~ d?Ry(0)

+=-- =-3 “dy2
(42)

which shows that h is equal to the radius of curvature at the peak of
the longitudinal-correlationcurve. In order to obta@ a finite dissi-
pated energy, the second derivative must be zero at the peak of the cor-
rection curve.

We call the “dispersion of a curve with respect to an axis” the
quotient of the second-order moment of the area bounded by that curve
and the area itself. The standard deviation is equal to the square root
of the dispersion. Since the area bounded by the spectral curve is equal
to unity, one will have
spectrum the expression

for the dispersion-of the longitudinal turbulence
—

[~1 =~w s2fx(s)ds ‘:
x o

—

.

.
-.

—

n

—

.—

.
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and since, on the other hand (ref. 3, p. 172)

1 J d% (0)
m s%x(s)ds =-~

~.

one finds, applying equation (42), that the dimension A is equal to
the ratio of the mean velocity and the standard deviation of the longi-
tudinal spectrum

The dtiension of the smallest eddies responsible for the dissipation,
referred to the longitudinal-correlation length, may be given as a func-
tion of the spectrum alone by the relation

(43’ )

Making the same calculation for the transverse spectrum, one finds
the dimension A as a function of the standard deviation of that spectrum

(44)

The equations (43) and (M) give the rektion

My= J=]x (45)

The dispersion of the transverse spectrum is twice the dispersion
of the longitudinal spectrum when the turbulence is homogeneous and
isotropic.

When one studies the correlation between the longitudinal velocities
at a fixed point, one can define a quantity which is analogous to the
dimension A and is given by

. 1 d~(0)
—= - (46)
Ata

*2

.
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The time & is equal to the inverse standard deviation of the
spectrum of G. 1. Taylor .

(47)
—

and referring this time to the correlation time I& one finds

7%2
~=; ~ 1

m t Mm ft(~)
U*O

6. Nondimensional Notations

In order to simplify the calculations and the

(47’ )

notations, we employ,
in what follows, dimensionless coefficients. We put in Euler’s system

and

The correlation coefficients between the simultaneous turbulent
velocities are

~A(P) = RA(r) I&(E) = Rx(x) ?sY(v)= Y(Y) %(7) = Rt(h)

and the spectral functions

.
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.

The dimension of the smallest eddies responsible for the dissipation
s can be referred to the longitudinal-correlation length or to the

transverse-correlation length

In Lagrange’s system one puts

‘L=* and ~L= *L

same

-

The correlation coefficient between the turbulent velocities of the
particle at two instants t and t + h is

gtL(T) = RtL(h)

and the spectrum of J. K&z& de F&iet

The conditions which must be imposed
a correlation law, are written with ~hese

-1< ~h(p) <+

1

-la
~A(s)ds =

o

lti ~A(p) =
P+0

so that the function represents
notations

1

1

1

Mm I+@) =0

P+o

9A(QA) >0

(48)

(49) “

(50)

(n) :

(52)
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To obtain a finite dissipated energy, it is necessary that

&@ < ~
dp2

We study, however, in chapter 111, correlation
verify this last inequality as is also the case for

(53)

laws which do not
the law given by the

equation (23). We a~sume & these cases that the curve is approached in
the region where the values of p are very small, that is, at the vertex
of the correlation curve and that it must be rounded off there to make
the first derivative zero.

In order to determine directly a function suitable for representing
the spectrum, one wi22.pose, aside from (52), the conditions

(54)

(55)

The equations (12) to (15) which determine the relation between the
spectrum and the correlation law will be written with the new notations

‘A@A)=;~mcOs(QAs)EA(s)ds (57)

J’R4(P) = Om cos(sp)~A(s)d6 (58)

For a study of the longitudinal spectrum and correlation it suffices
to replace p and A in the equations (48) to (58) by ~ and x; for
study of spectrum and transverse correlation, these expressions are
replaced by q and y.

In the study of the homogeneous and isotropic turbulence of a flow,
one may apply the equation (39) which gives

.
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The law of
of longitudinal
is written

35

transverse correlation is given as a function of the law
correlation by the relation corresponding to (36) which

and to the equation (37) there corresponds

The equation (42) gives

When the

the equations

and represent

1 d2&( Q) 1 d2~y(O)
.=. —
~2

and —=-~—

x d~2 X2
Y

dq2

(60)

(61)

(62)

turbulence is

(40) and (41)

isotropic, one has fly= l/2flx;consequently,

become

the relation between the longitudinal spectrum and the

(63)

(64)

transverse spectrum.

The equation (45) which gives the relation between the dispersions
of the two spectra, will become

(65)
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Thus, representing the spectra in dtiensionless coordinates, one
finds that in a flow of homogeneous and isotropic turbulence the dis-
persion of the transverse spectrum equals.half the dispersion of the
longitudinal spectrum. Eqwtion (65) represents the relation between
the dispersions of the two spectra when the longitudinal spectrum is
represented as a function of flx and the transverse spectrum as a func-

tion of ~. Ifone represents the

variable, of Qx, for instance, one

r—-l

two spectra as functions of the same

wiKl have the relation

Ll2 $22
x

To the equation (43) there corresponds

12x=—

n~2
xx

(65’)

the very simple relation

(66)

which shows that the dimension of the stillest eddies referred to the
longitudinal-correlation length is equal to the inverse standard deviation
of the longitudinal spectrum.

If one studies the turbulence by following the particles in their
motion, one determines the conditions which must be sd.isfied by the
equations capable of representing the correlation law and the spectral
function by replacing in the equations (lt8)to (56) p and A by TL

and tL. The equations (21)
written

()% ‘L

and will have the same form as the equations (57) and (58).

(68)

and (22) of J. Kampe de Feriet will be

;~’” cOs(~Ls)~L(s)ds (67)

‘~m cOs@TL)qtL(s)ds

.
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CHWTER II

37

METHODS USED FOR REPRESENTING TEE EXPERIMENTAL CORRELATION

CURVES OR SPECTRA BY ONE EQUATION

7* Usefulness of the Representation of the Correlation

Curve and of the Spectrum by One Equation

Representation of t,hecorrelation curve by one simple equation may
he very useful. The it is easy - when the law of longitudinal correla-
tion between the components of simultaneous velocities is known - to
calculate the law of transverse correlation for a flow of homogeneous
and isotropic turbulence with the equation (6o). Inversely, if the law
of transverse correlation is given, one finds, with ecpa.tion(61), the
longitudinal correlation. The dtiension A (or 2) of the sma~est
eddies responsible for the dissipation of energy by turbulent viscosity
can be determifledby (62) for all functions which have a second deriva-
tive at the origin. The greatest sertice the correlation eqpation
renders is in permitting the calculation of the spectral function with
the equation (57) without graphical.integrations which are very time-
consuming and have little accuracy.

One may use the equations representing the correlation curve for
study of the diffusion phenomena and for calculation of the measurement
correction with a hot wire of nonnegligible length as well as for the
correction of measurements with uncompensated hot wires. Moreover, it
is desirable to be able to represent the turbulence spectra or the corre-
lation curves by equations of the ssme general form the coefficients of
which permit a comparison between different turbulent flows.

If the spectrum is represented
can be calculated with the equation
be employed for other calculations.

by an equation, the correlation
(58). This correlation,kw may

law
then

8. Apparent Correlation Length

When one has a certain number of experimental points at disposal
and wants to determine the correlation law most convenient for repre-
sentation of the test results, one will if possible begin with the cal-
culation of the correlation length by pladmetric measurement of the area
bounded by the curve which best represents these points. When the corre-
lation curve is such that negative correlation coefficients exist, that
is to say, when it intersects the r-axis> or when this form iS Considered
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possible, it will then be necessary to measure the coefficients RA(r)

up to values of r sufficiently large to allow determination of LA

with sufficient accuracy. It will frequently be useful to employ, for
the study of such correlation laws, what is called the “apparent” cor-
relation length

~(ap) ‘OR ~s)ds

fA=OA

where r. represents the smallest value of r for which the correlation

curve intersects the axis of r (fig. 2).

Using the dimensionless coefficients, one till have

XA

where P. represents the
zero. Putting

$aP)
=*

A

one will have

~(ap) ,

(69)

smallest value of p for which ~A(P) becomes .
.-

— =—
P X’d

For all correlation laws
coefficients, one will have

(ap)
L

A=

~ (d p)‘Jtap ‘*
..

which do not give negative

‘A and XA = 1

Y

(70)

correlation

9* Representation of the Experimental Results by One Equation

(a) In the following chapters we give a large number of curves which
represent correlation laws of different forms. For determining the most
convenient one, one will begin by constructing the expertiental curve
representing ~ as a function of ~, q, or ~, according to the case;
we will draw it to the same scale as the curves given in the present report. -
Superimposing on these curves the experimental curve (drawn on tracing
paper), one will see quickly which one is the equation which may best
represent the experimental results. .
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After having chosen the form of the equation, one can employ three-.
methtis for calculating its coefficients. –

(a) By interpolation or by trial and error

(S) BY ta~ng as a basis the area bounded by
and the moments of different order of this area

the experbental curve,

(7) ~enthe corre~tion curve iS represented by a polynomial, one
can determine the coefficients by fixing beforehand the nuniberof points
of the experimental curve through which one will have the calcu~ted curve
pass. One will then determine the coefficients by calculating the coef-
ficients of the polynomial.

In order to apply the method’(b), one has to calculate a certain
number of moments of the area bounded ‘bythe correlation curve. Assume

to be the moment of
area bounded by the

(K)
q=

J
W s%(s)ds

A o-

the order k. One will’have,
curve

(71)

in particular for the

the moment of the first order will be

f-l\ t, m
(L)

J“L=”
‘A o

and the mcznentof the second order

(2) m
~=
A J o

SQA(s) ds

S%4(S )ds

After having selected the law which represents ~A(P), one finds.-
by integration the equations which give L&. On the other hand, one

‘A
determines graphically or tith a planimeter3 moments for the experimental

3Certati ple,nimeters(for instance, the apparatus of Koradi) measure ti
a single operation the area, the static mcment, and the moment of inertia.

-
Using such a device, one finds simultaneously Q

(o)
, L(l), and L(2).

A ‘A ‘A
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curve. Thus one obtains (K + 1) equations which permit calculation of
the coefficients of the correction law. Since the number of moments
used is never infinite and since the correlation curve resulting from

.

this calculation can frequently be different from the experimental curve,

both giving the same values of
~K

it is always necessary to verify the
‘A)

result.

When the correlation curve intersects the axis and one does not have
at disposal measuring results up to sufficiently large values of p, it
may be useful to employ moments of the “apparent’tsurface of the correla-
tion curve

(72)

one will have, in particular —

as a
(b) Measurement of the spectrum furnishes an experimental curve f(u)
function of u. If the correlation lerw$h is lmown, the function q(~)

is easily determined. In the opposite case ;ne can calc~ate it if one
assumes the form of the correlation law. For this purpose one traces f(m)
as a function of u using logarithmic coordinates, fid one superimposes
this curve on the curves corresponding to the selected correlation law,
with consideration of the relation d(u) = Slcp(fl).Thus, one finds the
relation between .CUand Sl and hence the correlation length, and one
obtains at the same time the coefficients of the correlation law} and con-
sequently also the equation of the spectral curve.

The methods employed for representing the correlation curve by an
equation may serve for finding directly the equation @i.ch can represent
the spectrum. In this case one will have for the moment of the order K
the expression —

and in particular

(73)

.-
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10. Experimental Results

In table III we give a list of the experimental results on measure-
ment of the correlation coefficients and of the turbulence spectra which
will serve us in what follows for comparison with the correlation laws and
with the spectral functIons. Every experimental curve has a name (several
letters followed by a number), and we shall indicate it in the future
simply by this name. The largest number of experiments furnishes the
longitudinal-correlation coefficients ~ and transverse-correlation
coefficients Ry. The curves KD.1.a, KD.lb give the correlation coef-
ficients R; and ~ between the components of the turbulent velocities

perpendicular to the-direction of the mean velocity. The experiment NPL.2

gives the correlation curve Rtv. taken from -grange’s viewpoint, that is,

considering the transverse turbulent velocities of the same particle at
two different instants. This correlation curve has not been obtained by
direct measurements but by performing a calculation starting from the
turbulent-diffusion tests (ref. 6, p. 473). The experiment EGR.lc fur-
nishes the correlation ~ between the longitudinal turbulent velocities
at a point whfch is displaced with the mean velocity of the flow. Ko.lc

gives the correction R; between the transverse turbulent velocities at
.

a point fixed in space (with respect to the hydrodynamic center).

The spectra have been determined by making experiments at a point
fixed in space, and concern the energy distribution of the longitudinal
turbulence. Thus, one does not have at disposal either a longitudinal
turbulence spectrum fx(m) or a spectrum ftL(~) of J. Khmpe’de Fe’riet.

In table IV we give the values of the apparent correction lengbh

L(ap) and of the true correlation length L. The latter is given only
for the experiments where the correlation curve intersects the abscissa
axis. For the experiments NBS.2 to NBS.6, for which measurements have
been made with positive and negative distances y, we calctited the
correlation length by taking the average of the lengths measured for the
two parts of the curve. In the same table we present also the moments
of the first and of the second order of the “apparent” surface of the
correlation curve. We did not calculate these moments for the experi-
ments H.la, 2a, 3a, &a for which their determination with sufficient
accuracy would be difficult.

~2 (ap)
Figure 6 represents [()]

[1
L(l) (ad

as a function of for
the correlation curves Rx ‘and ~. Onthisfigure only-the experimen-

tal points related to the wind-tunnel tests are given. It is found that
these points can be represented rather satisfactorily by a straight line.

.
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.

The points which correspond to the laws of the form ~A(p) = e~(.lpl)

and ~A(p)
= ‘W(- ; P2)

are placed rather close to that straight line.
.

It is useful to remember that in all tests made in the wind tunnels the
turbulence is measured downstream of the grid.

Assuming for the experiments for which one does not find a value of

the apparent correlation length ~(ap) = L, one is able to give the ratio
of the longitudinal correlation length and the transverse correlation
length andto vbrify the equation (39).-VThese ratios are given in table V.

KYFor the experiments KD.la, lb we give ~ the experimental value of which
Lx

may be cmnpared to the one given by equation (39t).

In a flow of homogeneous and isotropic tmbulence the values of these
ratios must be equal to 2. When one stuties the experimental results
obtained downstream of a grid and demonstrates by the relation existing
between longitudinal and transverse correlation that–the turbulence is
homogeneous and isotropic, one has to understand that this property is
approximate and concerns only the region in which the.tests have been
made. One states, in fact, that the intensity of the longitudinal tur-
bulence decreases when the distance from the grid increases.

.
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CHAPTER III

THE CORRELATION LAWS WHICH DERIVE FROM R4(p) = exp(- 1PI)

We study in this chapter the correlation laws of the form

[

n=K
gA(p) =

1

A. + ~~ cos(~cp) exp(-clpl)
n=l

(74)

(75)

(76)

@*(0)
For these laws, the condition — = O is verified only in

dp
exceptional cases; the dissipation energy is therefore generally not
finite. These laws are nevertheless of interest because they are rela-
tively simple and can frequently represent satisfactorily the experimental
correlation curves. Although it is not possible to apply them to the cal-
culation of the value of t (or of A), they can nevertheless serve for
determining the spectrwn of turbulence and for the application of Th. von
Kwman’s law in a flow of homogeneous and isotropic turbulence.

Since the aim of this study is to permit the selection of an uncom- 1

plicated equation for representation of the experimental curve, we shall
exmine only the simplest examples of these laws.

11. Law gA(p) = e~(-lpi)

If one makes in the equations (74-),(~) K= O and in equation (76)
K = 1, one finds the simplest exsmple of these laws

R4(p) = exp(-lpl) (77) “

The use of this equation for representing the transverse correlation :
. curve has already been proposed by the National Bureau of Standards as we

have recalled in the first chapter. H. L. Dryden also has utilized it,
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by arlalOgy,
from it the

Making
spectrum of
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for representing the longitudinal correlation, and has deduced
spectral function (ref. 12).

the
the

the expression

(a) Assume
be

.

Fourier transform according to (57), one finds for the
turbulence following a straight line in the direction A

the longitudinal-correlationh.w

In a flow of homogeneous and
equation (6o) for determining the
be

eq(-1~1).

—

corresponding

—

(78)

to (77)

(79)

isotropic turbulence, one may apply the
transverse-correlation curve which till

E.J,)=(1 - ;Id)-w(- *171) (80) ‘“

and which one can represent as a function of ~, applying (59) by

(80’ )

The correlation curve ~(n) intersects the abscissa axis for the

value 70 = h and becomes negative for the values l~rger than q, passing

through the minimw: [Ey(q~min = -0.5 e@(-3) = -o.~249 for v =6.

Figure 7 represents the curves: l?x(~)~ ~(q)~ and ~y(k).

One can give the correlation law also yith the apparent correlation
length as a basis. One will obtain %x = 1 and applying equation (69)

one finds: XV = 1 + exp(-2) = 1.1353. Taking (70) into account, one

~’ as a function of ~(aP). The cue which represents thecan trace

longitudinal-spectrum corresponding to (78)

Cpx(sl)=: 1
1+s22

(81)
.

is given in figure -8. —
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(b) Assuming the transverse-correlation“law

E#l) = exp(-lql)

one finds, in a flow of homogeneous and isotropic turbulence, the
longitudinal-correlation law

&(6) = + -(1+ 21E.1)-w(-21Eljl
26

which can be expressed as a function of q by the rektion

(82)

(83)

(83’ )

The curves represented by the three last equations are given in fig-
ure 9. To the.transverse-correlation law (82) there corresponds the
transverse spectrum analogous to (78). In a flow of hcmogeneoue and
isotropic turbulence, one finds the longitudinal spect?xm by applying
eqmtion (64). One obtains

[ () ]cpx($l)=~~$arctan~ -1 (84)

The two longitudinal spectra (81) and (82) are compared in figure 8.
Let us note that, by assuming the correlation law (82), one does not
obtain the spectrum (81) employed by H. L. Dryden (ref. 12), but the spec-
trum represented by the equation (~) (when the turbulence is homogeneous
and isotropic). Besides, the two spectra do not differ greatly.

(c) Comparing the transverse-correlation law (82) tith the results
of the experiment NBS.1, one finds (fig. 10) that the experimental points
are relatively represented by the theoretical curve. A similar comparison
made for the experhnent NBS.7 gives a still better result (fig. n). With
the transverse-correlation law known, one can give the longitudinal cor-
rection, for homogeneous and isotropic turbulence; it will here be deter-
mined by the relation (83). The theoretical curve and the experimental
points (NBS.7a) have been drawn in the figure, for the longitudinal cor-
relation ~x(q), and since the points are not placed on the curve, one

can say immediately that the turbulence of the flow in which the experi-
ments NBS.7 have been made is not homogeneous and isotropic.



46 NACA TM 1436

12. Law
.

[

n=K
R&) = 1Ao += & cos(~ cp) exp(-clpl)

The equation
by replacing ~
obtains the law

which comprises a

L n=l J

(74) may be represented in a slightly clifferent form
which has an arbitrary value by integers n. One then

[ 1~A(p) = ~KAn cos(ncp) exp(-cjpl)
n=O

(85)

Fourier series. An applic.ation.of.this series.will,
besides, be difficult because it will require, in general, employment
of a rather large number of terms. We study here only the simplest laws
which have the form of the equation (74), and in the first place, the
one which one obtains when ~ = O and K = 1.

(a) ~W %(P) = exp(-clpl)cos(mcp).- ‘Tothe correlation law of the -

form

EA(P)= exp(-clpt)cos(mcp) (86)

there corresponds the spectral function

C@(s-u) =:
[

1

C2 + (mc + fl)2 ‘1‘#+(:c-Q)z
Integrating the equation

(87)

(86) from zero to infinity, one finds

c ‘m+

always positive. Since the equations (86)The spectral function is
and (87) depend only on the absolute value of m, one can admit that m
is always positive. --—

The correlation curves (fig. 12) have the form @ a dsnped sine,
the dsmping of which decreases tith increasing m. When one has obtained
an experimental correlation curve of this type, one might have difficulties
in measuring its corre~tion length with sufficient precision and then to
represent it as a function of p, in order--tocompare the experimental
curve with the theoretical curves. It will be much easier to make the

.

comparison on the basis of the apparent correlation length. The value p.

.
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.

.

for which the correlation curves intersect the p-=is is given by

p. = +. APP~ng eqwtion (69), one finds the ratio of the apparent

correlation length and the true correlation length which depends only on
the value of the coefficient m

()xA.~exp-&+-l

and which is represented in figure 15. Figure 13 gives the correldion

curves as functions of p(ap). The abscissas of the intersection points

of these curves with the axis of the p(aP) are represented as functions

of m in figure 15. Figure 16 hives the abscissa [P(ap~~n of.he

minimum of the correlation coefficient as a function of m, likewise the
value of this minianun

[( q~ap 1 .11

%in ‘Z%in X mc ‘c ‘m(-~ + ‘i)

[(jIJ,Ap m— eq
rein= m2+l [-* arc ‘-(-*+ ‘)]

The spectral curves are represented in figure 14. These curves pass ‘
through maxima, the values of which increase with m. Figure 17 gives

the value of
[1~A ‘?- to which corresponds the maxhum of the spectral I

function and which one calculates by applying the relation

[1%
2 . 2m&7’Zi - (m2+ 1)

‘A
(m2 + 1)2

and also the value of [qA(%fl which one obtains by applying this
~,

relation to (87). Since flA is always positive, the maximum of the

spectral function corresponds to ‘A = O, for all values of m smaller

than ~3.
!

As has been said in the second chapter, the coefficients of the
equation representing the correlation curve may be found by calculating
the moments of different orders for the experimental curve and by comparing ‘



48

them with the moments of
one coefficient is to be

NACA TM 1436

the theoretical curve. In the actual case only
determined. Also, it is sufficient to know the .

moment of the first order. When one represents the correlation law as a

function of p, one finds L (1) = 1 - m2, and by giving the curve as a

function of p(aP) one obt~~ns, applying equation (72)

These two moments are given as functions of the coefficient m in
figure 18.

(a) When one has, in a flow+of homogeneous and isotrqic turbulence,
a longitudinal-correlationlaw of the fo~. .- —

3J~) = exp(-clgl)cos(md) (88)

where

c =& --

.

.

one finds for the transverse correlation, applying the eqyation (6o):

One can express this correlation as a function of ~, by applying
to this last equation the relation (59).

(~) When the transverse-correlation law in a flow of homogeneous and
isotropic turbulence is —---.

Ey(d = exp(-clq~)cos(mcq) (90)

one finds with eqgation (61) for the longitudinal correlation

F&#) =.+
{[
rn(lgl+ l)sin(2mcl~l) -

k

*(21EI +1- ) 1 1m2 cos(2mc~) exp(-2clEl) + 2(1 - m2) (91)
.

.
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.

(7) Since the points of the experiment NBS.8 are placed along
the shape of which recalls the curves represented in figure 13, we
represent them by such a curve. For obtaining the coefficient m,

49

a curve
try to
one

takes L]~(~)(a~)in table IV and one finds in figure 18 m = 0.45.
Transferring this value into equation (90), we find the correlation curve

which is given as a function of p(aP) in figure 19 and which represents
the experimental points quite satisfactorily.

(b) kw RA(P) = [~+A1 cos(mcp~exp(-clpl).- When one makes in

equation (74) K = 1, one obtains the correlation law of the form

.

E*(P)= [.+ Al cos(mcp~ exp(-clpl)

The spectral function which is calculated
will be

{

2A() + Al
9A(QL) ?: ~ +

c+n2 C2 + (fl+mc)2

For determining the coefficients of these
the conditions (k8) and (55), and one obtains

(92)

with the equation (57)

Al

~2
1

(93)
+ (0 - Inc)a

equations, one must apply

‘1 =l-AO
A@2 + 1

and c =
m2+l

which permits to give (92) and (93) as functions of only two coefficients.
The coefficients Ao and m cannot be arbitrary, and their values are
fixed by the inequation

(5m2 + 8) + ~16m4 + 8QU2+ 64-~<Ao~~2

The ratio of the apparent
tion length is calculated with
relation

correlation length and the true correla-
te equation (69), and one finds the

r% em(-clpol )
m ~~” ]

where

. Ipol ()Ao+Lrccos ——— ——
A. O-l
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As a consequence, the correction curve intersects the p-axis only
AO<0.5; ” -

-. —.

The correlation curve is monotonous in-the inteival

(m2 + 1) 4 -~<%<(ma+l)+l=l
m2 ~2

and outside of this interval the abscissas of the maxima and the minima
are given by

l% IP
1

[(

AO
~=o ‘= )

.—
‘c ‘in Ao -1 ~fil - arc sin

( J]&

We give in figure 20 the value of ~ as a function of m verifying

the conditions (~) to (52). The admissible values of the coefficients A.

and m are divided into three types:

First, tilecoefficients for which %—,< 0, that is, for which the
dp

correlation curve does not present either minimum or maximum, with the
curve descending continuously from 1 to O

Second, the coefficients for which O $RA< 1 but for which ~

can become negative so that the correlation then presents positive maxima
and minima

Third, the coefficients Ao, m for which -l~R4 <1 which gives

correlation coefficients presenting positive maxima and negative minti.

Figure 21 represents the correlation laws as functions of P(ap)
for a few values of ~ and of m, aridfigure 22 gives the corresponding
spectral functions. One finds again in theqe figures.the curves already
given previously since one obtains the law”(n) when A. = 1, and has the

equation (86) for Ao = O.

These curves permit representing the e~erimenta.1 results by super-
imposing the theoretical cme6.on points $.raced@ functions of p(aP).
For trying to determine the coefficients ~ and m, using the surface
moments of the curve, it would be necessary to give the moments of the
first and of the second order.

—

(a) When the lor@itudinal-correla.tionlaw is of

5X(E) ‘,[~ +Al cos(mclgl~exp(-clg

-.

the form

) (9)
.

—
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.

one finds for the tr~sverse correlation, in a flow of homogeneous and
isotropic turbulence, the expression

~y(?) = ~0$ -~C,V,) +A1@ ‘~c,~,)cos(~mc~) -

3A mclqlsin41 (*me’’l]e~(-*cl”)
(95)

which can be given as a function ~ by

(P) To the transverse-correlation law

~(1’1)= ~o+Alcos(m.n]ew(-~clql)
there corresponds the longitudinal correlation

=&A m2+—

{

1 A1(ml~l +l)si.n(2mclE!) -&(~)
2p 1 52

(96)

*(2151 + 1 -

}

m2)cos(2@)l~l -Ao(:+ 1~1) ex2(-2cl~l)

(97)

which one can express as a function of ~ by applying the relation q = 2~

(7) suPer@osiw on the ewer~ental points of the experhnent NBS.1
the curves of the figure 21, one finds that one obtains a good representa-
tion when the coefficient m = 0.5 and when Ao lies between 2 and-k.
We determined by trial and error that the best result corresponded to
& = 2.75. Figure 23 shows that the theoretical curve represents the

experimental results

Figure 24 gives
the curve m = 0.5,

In figure 25 we
correlation curve m

.

for this test perfectly.

the points of the e~riment NBS.5 represented by
AO=2.

represent the eqeriiient H.& by the longitudinal-
= 1.5, ~ = 0.6. This curve presents maxima and

.
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minima for large values of 5 as could be predicted on the basis of -fig-
ure 20. Equation (%’) Permitg calculation of the corresponding transverse-
correlation curve which represents very well the pofnts of the expertient
H.kb for the,values of ~ smaller than 1.2. One may therefore assume
that the flow for which the experiments H.4 have been made approximates
rather closely a flow of hrmnogeneousand isotropic turbulence.

13. Law ~(p) =
[ 1

l+~K& Cn(lpl)n exp(-clpl).
n=l

(a) Iaw.- RA(P) = r.+A1 clpllexp(-clpj)

When one makes
law of the form

in equation (~) K= 1, one
—

finds the correlation
-. .-

~A(d = ~+A1 clp~e~(-c

The corresponding spectral function is

IPI) (*)

q14($lA)=

[

c- - Q2
2:++A1

c +-Q
(c: 1

+ ~2)2
(99)

By integrating

and prescribing the

the eqwtion (g8) from zero to infinity, one finds

c =l+A1

conditions (48) to (52), one calculates that the coef-
ficient Al can lie between the ltiits

-1< Al< 1

The abscissa of the intersection point of the correlation curve and
the p-axis is given by

This shows that the curve intersects the

finds finally for the ratio
true correlation length the

‘A

.

axis only for Al< O. One

of the apparent correlation length and of the
expression

().l-ALexp~
l+A1

.

.



NACA TM 1436

The figures 26 and 27 represent the correlation
function for several values of the coefficient Al.
ficients of a value very close to -1, one must write

53

law and the spectral
When one uses coef-
them with a suffi-

cient numiberof decimals because then the value of Al has a very great
effect on the shape of the curves.

The minimum correlation coefficient is given by the relation

and corresponds to the abscissa

These equations are valid only

determines
calculated

the.position of the
tith the use of the

2.-

141
c1

%x

which permits determination of

This maximum lies on the q-axis

for

()1 - Al
Al exp —

Al

A.-1

AI(l +Al)

Al <0. The value [S2’]%x which

nmdmum of the spectral function may be
eqyation

1 + 3A1

‘Al-l
(1 + A1)2

[qA@Ajmx by application of equation (99). “

for all values of Al >-$.

In order to calculate the coefficient Al by the method of moments,
it suffices to how the moment of the first order which one finds by means
of the equation (71)

& = ~

This method will be applicable only when L(l) <1. The
‘A

order for the positive surface is obtained with equation
to

moment of first

(72) and is equal

[1
L(l) (w)

1 1

{

1+2A1+(L ()}~Jew *
‘A ‘7

X. (1+A1)2
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The”figures 28 to 31 represent the diff~rent characteristics of the
correlation curves ($%) and of the spectra correspondi”~ to them.-.

I&the longitudinal-correlation bw be of the form
. ., . . . .. .. .

to which there corresponds in a flow of homogeneous and isotropic turbu-
lence the transverse-correlation law

which has the form of the laws g}ven by

To the transverse-correlation law

equation (75).

Js’#1)= (1

there corresponds in a flow of
longitudinal correlation

In order to represent the
by a law of this form, o= may

+Al clql)exp(-clql) (102)

homogeneous and isotropic turbulence the

.1 }2A1)(1+ 2cIE]) + 4Al C2E2 exp(-2cJgl)

(103)

points o? the experiment NBS.9 (fig. 32)
first try to apply the method of moments.

Taking the value of [1~(1)(w)=0.847, given in table IV, as a basis,
one finds the coefficient Al in figure 31. For obtaining the moment of

first order having this value, one may take either Al = 0:06 or Al = -0.50

Superimposing on the points the figure 26, one finds that for the two coef-
ficients the curves represent the experimental points r,athersatisfactorily.
One sees, however, that a better result is obtained with”the coefficient
Al = -0.25 (fig. 32). Besides, it will happen quite frequently that one

obtains better results by trial and error than by the method of moments.

[(q
(ap)

For the experiment~.4b, L 1 =0.762, hence, figure 31 gives
Al = o.g5. ‘“”tie-seesthat the transverse correlation cue “corresponding

to this coefficient represents very well the experimental points (fig. 33).
The longitudinal-correlation curve given by the equation (103) likewise
represents very well the results of.the .expdrimentH.4a. As a result, the
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flow for which these experiments have
homogeneous and isotropic. Figure 33
which alsorepresents the experiments

55

been made may be considered as
may be compared with figure 25
H.4. In the first figure we repre-

sented the measurements of the transverse correlation by an equation and
deduced from it the longitudinal correction by assuming a flow of homog-
eneous and isotropic turbulence. Regarding the second, we selected first
the equation which represents the longitudinal-correlation curve and per-
formed then the calculation for the transverse correlation.

(b) hW.- Q@) = [l+ AICIPI +A2c2p2]eq(-clpl).

By making in eqmtion (n) K= 2, one obtains the correlation law
of the form

~A(d = [ 2 ~=w(-cl,l )1+A1CIPI+A2CP (104)

The spectral function which corresponds to this correlation law is
written

{. 2}2(C2- 3$22)
QA(QA)=;C2:Q2 l+Alc:-

Q2 c
+ 2A2

(C2 + @
(lm)

c +$22

Integrating equation (104), one obtains

c =1+A1+2A2

and applying the conditions (k8) to (52) one finds the limits for the
coefficients of these eqwtions

-(l+2A2)<Al~l -l<A2~
(4 - Al) + /(4 - A1)2 - 9A$

The abscissa of the intersection point of the correlation curve with
the

and the ratio of the apparent correlation length
length is eqml to

and the true correlation

‘A=l- [( 11+Al+ 2A2)PO+A2 cP:eq&lclpo)
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Making the derivative of (lOk) equal to zero, one finds the abscissa
of the point for which the correlation coefficient is minimum or maximum

and which gives with the equation (1~) the value of’this coefficient.

The above relationshipspermit tracing of figure 34 in which we have
indicated the limits within which the coefficients Al, A2 may vary with-

out causing the equation (104) to cease representing a correlation law.
We have, moreover, defined the dcmain in which one finds monotonous cor-
relation curves, fzq%hermore the domain where the correlation curve pre-
sents a negative minimum and fiblly the values of the coefficients for
which the curve presents a positive maximum (without counting RA(0) = 1

which is not a maximum).

The figures 3’5 and 36 give the correlation curves .andthe spectral
functions for.several values of the coefficients Al and A2. One finds
in these figures the curves presented already previously for the equa-
tion (g8) which is a particular case of the correlation law now being
studied.

When one knows the value of the mcments
order, one can calculate the coefficients by

~(ac~ -
6L(1)C2+ 6C -.-

[
Al=-&

(l)cp 1-3c+2

.

of the first and second
solving the equations

20-=

We have stated that the method of trial.and error gives very good .-

results and is much faster than the method of moments. -

When in a flow of hmnogeneous and isotropic turbulence the longitudinal-
correlation law is —

:X(E) = [ 1
l+A1cl~l +A2c2~2e~(-cl~l) (106)

one finds, with application of von Khrman’s law, for the transverse cor-
relation the expression —

[
~y(~) = l+~(3A1 - >)clql +~(4A2 -Al)c2q2 1-* A2C:171%++171)

(107)
.
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This equation likewise has the form of the law (n), but with K = 3.

When, inversely,

one obtains in a flow
tudinal correlation

Qg) =—
{
(22 12c~.

the transverse-correlation law is of the form

[
l+Alcl~l +

of homogeneous

+ al+ 6A2)[1

A2 c21q21]exp(-clTl) (108)

and isotropic turbulence the longi-

- (l+2c)15~e~(-2clgl) -

[4(A1++252+8A2c31~31J-@4~l)} (109)

The figures 37 to 42 show the results of several experiments and the
curves which represent them. These curves have been obtained by trial and
error. The results of the experiment NBS.2 are represented by the
transverse correlation law (1o8) with coefficients Al = O and A2 = 0.1.
As shown in figure 34, the curve intersects the abscissa axis passing
through a minimum. Consequently, we have drawn this curve as a function

of q(aP) (fig. 37).

The experiment IU).lc(fig. 38) concerns the correlation between the
transverse velocities at the fixed point, and the experimental points may
be represented by a law analogous to (104), of the form

1G(T1)=[1+‘1CITII+‘2 C2T2 ‘=(-c’T’)

or

T1 =

with the coefficients

the correlation curve
monotonous.

J
m

h
Y and L; = R~(s)ds
L
P

o

Al = -0.5, A2 = 0.3. One sees in figure 34 that

does not intersect the abscissa axis and that it is

The results of the experiment NBS.1 have already been represented
very well by the law (96), in figure 23. One can represent them as well

. by the correlation law (108), as shown in figure 39.
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The measurements of the transverse correlation EGR.lb are represented
figure 40, by the curve of the equation (1.08)with the coefficients Al

and A2 = 0.5. This curve intersects the abscissa axis, and one represents

(aP). In a flow of homogeneous and isotropic turbu-it as a function of ~
lence, there corresponds to the transverse-correlation law (108) the
longitudinal-correlationlaw (109) which one has also represented as a

function of ~(ap), taking into account the relation

The experimental points of the experimentiEGR.la are not very well
represented by this last law although some points ae placed.on the
curve ~. The experiments EGR:l have therefore been made in a flow,

the turbulence of which is not fully homogeneous and isotropic but
reasonably close to that state.

The experiments ~.la and KD.lb give the.longitudinal and transverse
correlations between the simultaneous transverse velocities. In figure 41

v (experiment K&lb) as a functionwe represented the correlation curve R
-Y

of qv = +. If the flow in which these experiments were made were
%

homogeneous and isotropic,

would correspond to the eq=tions (5) which”would permit application of

the equation (107) for calculation of the correlation c~e Rv. Since
-x

the experimental points KD.la deviate fr~ this curve~ the flow is not
homogeneous and isotropic. —

Representing the results of the experiment H.2a by the longitudinal-
correlation law (1o6) (fig. 42), one finds the transverse correlation for
the homogeneous and isotropic turbulence; and one sees that-the points of
the experiment H.~.da not correspond to the curve_

%“

14. Law RA(P) = ~ % ~xp(-c.lpl)

The number of arbitrary constants one will have for the laws of
this form is 2(K - 1). When K= 1, one has again equation (77) for
which there is no arbitrary constant. We study here only the correlation
law with K = 2. .—

=1 -

*-

.

—

-.
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(a) Law R*(P) = A exp(-clpl) + B exp(-3clpl).- Assuming h ew-

tion 176) K= 2, Al = A, ~=B, c~=c,~ c2=13c, o=obt*

the correl&tion law of the form

~A(p) =

to which corresponds the

9A(~A) =

Aexp(-clpl) i-B exp(-~clpl) (Slo)

spectral function

b2CA 1
7TC

+ B9
+ @A

I_

Integrating equation (110) and applying the

c =A+: B =

which permits expression (1110)and (ill) as
and B.

●

1

1

(111)
$2C2 + &A

condition (50), one finds

1 -A

functions of two constants A

The coefficient j3 may be larger or sma~er than unity, but one will
obtain exactly the ssme results by replacing this cc-efficientby its
inverse. Assuming that

P 1-—<A<—.
1 -P 1 -$

The abscissa of the
the p-axis will be

0< j3< 1, one finds for A the limits:

intersection point of the correlation curve tith

IIPo = 1

()
log ~

C(l - p) A-1

and since it must be positive, the curve intersects the axis 0-% for
A > 1. The ratio of ~he apparent-correlation length to the true;
correlation length Is

XA=*[W%W+%4,4%3*I} ~

The abscissa of the point for which the correlation coefficient is
minimun, is equal to

II 1

[1

A
p~tin = C(l - P) log

P(A -1)
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and the value of this minimum is of the order of

[dg .,. =‘[WI*+ “ - “[!%=+]*
me value of ~A for which the spectrum presents a maximum may be

calculated with the equation

and one obtains this maximum by substituting this value into equation (lU).

Figure 43 gives the limits within which A may vary as functions of
. For the present law there are no correlation curves which present a

&imum as was the case for (104). There are only two types of curves:
those which intersect the axis and pass through a minimum value, and
those which do not intersect the axis and are monotonous. The correlation
curves and the-spectral curves are traced in figures 44 and 45 for several ●

values of ~ and of A. The different characteristics of these curves __ _
are given in figures 46 to 51.

—..

The moments of

@ =

When one knows

.

the two first orders are given by the relations

~(2)=2A+5
C3()

their values for an experimental correlation curve,
one can then determine the coefficients of equation (110)
equations

{*i’)-[N12]C2+[J’)+(2’JC+[J’)-

The moments of the “apperent”
given by the equations

$C-1
-A=—

P- 1 -.

by solving the

110 =

surface of the correlation curve are
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[- 1

(ap)
J2)

{[‘* ‘2
- (a2 + 2a + 2)b] +~~ - (a2p2 + 2aP + 2)b~

}

or

~

a 1=—
1 -P ()

log & and
()

b= ~l-P

Figure 52 gives the moment of

function of A for several values

as a function of

[1

(ap)
the first order -~(l)

of $. Figure 53 represents

as a

[- 1
~(p) (ap)

curves corresponding to the different
values of ,6 coincide in this figure when A>l. Thus, when A >1
and when the correlation curves intersect the abscissa axis, one can
determine several correlation laws which give the same moments of the
two first orders.

Assume the longitudinal-correlation law to be of the form

!aX( ~ ) =Aexp(-cl&l) +Bexp(-13cl~l) (112)

In a flow of homogeneous and isotropic turbulence, there corresponds
to this law the transverse correlation given by the equation

E.#1) (=Al
)(

-~clql exp -+clql
)(

) (-*PCITI)+B1-@ll’@cP

(113)

When one has in a flow of homogeneous and isotropic turbulence the
transverse-correlation law

B-#-l)=Aexp(-clql) +B exp(-~cl~l) (114)

the longitudinal correlation is equal to

{[&(&)=--&Al- (2cl~l + l)exp(-2cl~l)_j+

-$~ - (2Bcl~l + l)exp(-29c151)]
}

(115) ,



One finds in table II, for the experiment NBS.3,”the moments
~1 (ap)
[-( )] L] (ap)

= 0.894 and
.

L(2) ● = ~056r0 To these coordinates there

corresponds in figure 53 the coefficient P = 0.25 with A < 1. Tracing
then in figure 52 a horizontal, the ordinate of which is 0.894, one finds
at the point of its intersection with the curve f3= 0.25 a coefficient A
which is approximately 0.25. The correlation curve corresponding to these
coefficients actually represents the experimental points very satisfactorily
(fig. 54). - -

In the same manner one obtains for the experiment NPL.3 for which

L1 (ap)
[-( )] L2 (ap) =

[()]= 0.752 and - 0.976, the coefficients 13= 0.8

and A = -3* The correlation curve which corresponds to these coeffi-
cients is traced in figure 55.

—
.. —

This method is not successful for the experiments H.la and NPL.la
for which we shall determine the coefficients by trial and error. For
the first time, we represent the points by the law (U2) with the coeffi-
cients P = 0.25 and A = 0.50 (fig. 56). Drawing the curve which
corresponds to equation (113), one sees that the points of the experi-

●

ment H.lb are not to be found on this curve~ this shows that the flow in
which these tests have been performed is not homogeneous and isotropic. .

The results of the experiment NPL.la are represented by the
longitudinal-correlationlaw (112) with the coefficient-s ~ = 0.25
and A =0.25 (fig. 57). The points of the experiment NPL.lb are placed
very exactly on the curve which corresponds to the-law (113). Hence
the result that the flow in which these tests have been performed is
homogeneous and isotro~ic.
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CHAPTER Iv

63

.

In this chapter we shall study the correlation laws of’the form

~A(P) =
[ 1
A. +~K& cos(~ CP) exp(-c’p’)

n=l

5A(P) = ~~ An exp (-Cn2P2)
=

(116)

(117)

Since for these laws
~A(0) = 0, it will be possible to determine
dp

by calculation the value of Z“ (or of X). As equation (66) shows, the
relative dimension of the smallest eddies lx is equal to the inverse

of the standard deviation of the longitudinal spectrum.

15. Iaw FIA(P)
= ‘w (+ f“)

When one makes in equation (1.16) K= O and in equation (1-17)
K= 1, one obtains Gauss’ curve

(u8)

Applying equation (57), one finds for the spectrum the relation

(119)

which represents a curve of the same form as the correlation curve. This

curve is given in figure 61 (for m = O).

(a) When the longitudinal-correlation law is represented by the
equation

~x(’) = ‘-(%”) (l’o)

.
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.

one has, in a flow of homogeneous and isotropic turbulence, for the
transverse correlation the expression

(la)

The curves representing these two equations are represented in fig-
ure 58. The curve which corresponds to (121) intersects the axis at the —

point ~0 .3 whence: X
‘& Y

= erf(l) + ~~ exp(-1) = 1.2581. The abscissa —

of the point where the transverse correlation is minimum is equal to:

r— = 3.1915 and the value of this minimum is:
&in= ~ .-

%in = -exp(-2) = -0.1353.
r

Applying equation., one finds: 2X = $

(b) In a flow of homogeneous and isotropic turbulence where the
transverse-correlation law is written

E@) = exp(-~ q’) (1”)

one finds for the longitudinal corre~tion the expression

The curves which correspond to these two equations are givenein figure 59.

For the dimension of the smallest eddies, the value
i

2 ~ corresponds‘Y= y(
to this ‘~W.

(c) The experiment EGR.lb can be relatively well represented by the
curve (12), as figure 60 shows. The points .ofthe experiment EGR.la are
placed rather close to the curve which corresponds to the equation (123).
As a result, the flow rather approxim@es.a flow of.hdinogeneousand
isotropic turbulence. This has already been seen wherithe test points
of the experiment EGR.lb were represented by the equation (l@) (see
fig. 40); whereas it--hadnot been possible to calculate, for that last
law, the value of ‘Y algebraically, one obtains now immediately

— .

‘1‘Y = :“

.

.
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16. [eLaw BA(P) ‘ A()+n:l

1
An cos(~ CIY)exp(-C2P2)

In studying these laws with K = O and K = 1, we did not find an
application for the experiments given In table I. We present, neverthe-
less, a few curves for K = O as well as the equations for K = 1.

(a) -w ~A(P) = exp(-c2p2)cos(mcp).- When one makes K = O in the

the equation (u6), one obtains the correlation law

R~(P) = exp(-c2p2)cos(mcp) (124) ‘

to which corresponds.the spectral function

(=5)

Integrating the equation (124) from zero to $nfitity, one obtains

Applying the conditions (&8) to (53), one finds that the coeffi-
cient m may be arbitrary. (lieassumes, consequently, that m is always
positive.

The abscissa of the intersection point of the correlation curve and

the p-axis is given by p

correlation length and the
from zero to PO

I
Y’c= .— and one ftids the ratio of the appsmnt

.2@c’

true correlation length by integrating (124)

In order to calculate this coefficient, it is easier to draw the correla-

tion curves as functions of p and to determine L(aP) by plardmetering
the area bounded by the curve up to its first point of intersection with
the abscissa axis.

The correlation curves and the spectral curves are represented in
. figures 61 and 62.

.
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(b) LS.w %(P) = PO + Al cos(mcp~ exp(-c2p~.- To the correlation law

EA(P)= [ 1
AO + Al cos(mcp) exp(-C2P2) (126)

corresponds the spectral function

(127)

Integrating the equation (1.26)one calculates the value of the coef-
ficient c which is

may

the

Applying t~e conditions (48) to (53) one finds that the coefficient AO
vary within the limits

.

The abscissa of the intersection point of the correlation curve and
p-axis is given by the relation

()Ipol=+= Cos +

which shows that this curve intersects the axis when A. <~.

17. Law R4(P) =

We shall study for these laws
the assumptions Al =A, A2 = B,

(a) hw ~A(p) = A exp(-c2p2)

the particular case
cl = c, C2 = pc.

+ B e~(-@2c2p2).- To

where K = 2 with

law

5A(~)=A‘4-c2f’2)+B4+2C2P2)

the correlation

(1.28) .

.
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corresponds the spectrum

Integrating the equation (128), one finds

B 1-A=

(I-29)

and applying the conditions (48) to (53), one obtains the limits within
which the coefficient A may vary

The different characteristics of the correlation curves are given
by the relationships

PO* =
()

A
c+- @’) log A - I

$[‘A= c 1
A erf(cpo) +~erf(13cPO)

P2
1 log

[1

A

&Jn= c2(3_- ~2) j32(A- 1)

The figure 63 shows the values of the coefficients A and ~ which one
can assume for the correlation law (1.28). The curve intersects the axis
when A > 1 while passing through a min--uej it is positive and
monotonous for O <A <1.

Figures 64 and 65 give the correlation curves and the spectral
curves for some values of A and of f3. Figures 66 to 69 give the char-
acteristics of the correlation curves, referred to the apparent correla-

. tion length.

*
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.

The moments of the true area bounded by the correlation curve are

p

[1

_ 1 q+~ ~(2) _fi A+B

2C2 P2 4=3
[1

p

and for the ‘~apparent”surface ON has

[- 1

(m)~(2) 1*—
{[
~A,erf(cpO)+$erf ~cpO) -

~c3x3 u

cpo~ e~(-c2~2)+;ew(-P2c2p$)
1]

[1

(ap)
The moment ~(l) is given as a function of A and

~2 Tap)
[olfigure 70, - is given as a function of [g(l)](ap) in fig-

ure 71. For A > 1, one has one and the same curve for all values of ~.

When the correlation curve does not cut the abscissa axis, one can
also determine the coefficients by calculation, by solving the equations

[ ““{~[L(l) ~(2)1
2 X(:(l$ - ]2g(2) - - - -

1 k-c

P -%=
G c@ -1

Let the longitudinal-correlation

g~(~) = A exP(-c2E2)

2C

l-FP
A=

1 -B

law be of the form

( 222+Bexp-~c~ )

.

(130)
.
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In a flow of homogeneous
correlation which corresponds

69

and isotropic turbulence the transverse
to this law will be

T@) (=A1-~c2~2 )exp(-~c2q2)+B(l-- ~p2c2q2)exp(-~P2c2q2) (131)

and the relative lendh of the smallest eddies which is calculated bv
application of the e&ation (62) is given by

12=
x

2C2(A1+B132)

.
the relation ~

(132)

This length is represented as a function of A and of 13 in
figure 72.

When the transverse-correlation law is

E@ =@P(-c2P2) ( )+B exp -~2c2q2

one then finds in a flow of homogeneous and isotropic turbulence

and equation (62) gives

1
ZY2 =

c2(A+B~2)

(133) ~

(134) “

(135)

The relative length ‘Y ‘s
figure 73.

given as a function of A and of 13 in

[1 (ap)
To the experiment H.2b correspond the moments ~(l) = 0.893

~2 (ap)
and L( q = 1.410. The point drawn with its coordinates in fig-

ure 71 is placed rather close to the curve B = 0.25. Then one traces a
horizontal line with the ordinate 0.893 in figure 70 and finds that it
intersects the curve p = 0.25 at two abscissa points A = 0.55
and A = 0.88. In figure 71, the experhental petit lies near to the part

of the curve P = 0.25 closest to the axis [Q(l)](ap). Therefore one

must in figure 70 take account of the intersection point with the branch
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of the curve closest
cients P = 0.25, A

to the same axis. One thus obtains the two coeffi-
= 0.55. The experiment is represented by a point

which gives a negative correlation coefficient. In order to hve-a law
which represents”a correlation curve which passes through negative
values, it would be necesssry that A> 1. So one sees that the point
which corresponds to the moments of the exper@ental curie is very far
distant from the curve A> 2 (solidly drawn h fig. 71). Thus it will
not be possible to find coefficients for the equation (113) in such a
manner that the curve represents the points of the experiment H.2b and
intersects the abscissa axis.

The transverse-correlation curve calculated with the coeffi-
cients A = 0.55, p = 0.25 and the e~rimental points H.2b are drawn
in figure 74.

Comparing the points of the experiment H.2a with the cue & cal-

culated with the equation (134), one sees that the turbulence is not
homogeneous and isotropic. This has, besides, already been seen in fig-
ure 42. The relative dimension ‘Y can be determined by-the equation (135)

or by the figure ~ as soon as one assumes the turbulence to be isotropic.
Xn this case one would obtain Zy = 0.632. f

The moments corresponding to the experiment H.4b are” [@)l(ap)=O .762 -

and [~(2)l(ap)=l.0~. One finds the coefficients P = 0.25 and A = 0.3

in the ssme manner as for the preceding experiment. The @ansverse-
correlation curve corresponding to these coefficients represents in effect
satisfactorily the experiment-H.4b, and the longitudinal-correlationcurve
calculated by means of the equation (134) overlaps with the points of the
experiment H.4b; this shows that the turbulence of the flow in which these
tests have been made may be considered homogeneous and isotropic. One
finds as the ratio of the dimension of the smallest eddies and of the
longitudinal-correlationlength ‘Y = 0.621.”

Superimposing the points of the experiment.NBS.9 on””thecurves of
the figure 64, one finds very quickly that they can be represented by the
eqpation (133) with the coefficients ~ = 0.25, A = 0.5 (fig. 76). One
obtains easily, by calculation or on the basis of figure 73, the value

‘Y = 0.619.

Likewise, the results of the experiment NPL.3 are represented by the
equation (133) with the coefficients P = 0.5 and A = 0.5 (fig. n).
One finds, for these coefficients, ‘Y = 0.952.

.

.
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cHmTERv

TEE CORRELATION LAWS DEVELOPED IN A SERIXS

OF HERMITE POLYNOMIALS

In reference 5, J. Km& de F&iet represents the correlation curve
by an equation which involves an ex@sion in a series of Hermite
polynomials.4 With the notations W6 are using in the present report, the
correlation law is written

[

n=k
EA(P) =

( )]eW(c2p2)
I+~BnHmficP

n=l
(136)

where

[
H_(s) =&~~ .2&2+22””- 1

2n n: 2: 1-%+‘4-● ● ‘(-’)n’aI%Ts’n.
and for the first polynomials one - have

~(s) = s’ -1 H6(s) = S6 - 15s’ + 45s2 -15

H4(s) = S4 - 6s2+ 3 He(s) =S8 - 28s6+210s4 -

To the correlation law (136) corresponds the spectral

‘=4-C2P2)
which involves an expansion in a power series.

[

n=K
18. &W

1
()

1+~~ c2np2ne~ -c2p2
n=l

420s2+ 105

function

(137) .

It would be much more convenient to employ an equation for repre-
sentation of the correlation curves in which the development in a series
of Hermite polynomials is replaced by a power series

4The study of the Hermite polynomials has been carried out by
J. K&mpg de Feriet (ref. 18)..
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[

n=k
Ilh(p)=

1

1 + ~ & C%zn ,Xp(-c%z) -
n=l

.
(138)

The relationship between the coefficientsof these two eqwtions has
been given by J. K&mpe’de Fe%iet and is written

(139)

Applying eqpations (57) to (138), one

J.

finds the spectral function

~&&( ~) (.40)

.

which comprises a series of Hermite polynomials.

Integrating the equation (138) from zero to infinity, one obtains

[

‘=k 1.3. ●*1+X
1

.(2n - 1) An
c =

n=l 2n
(141)

The inequality (53) leads to the general condition fm all laws of’
the form (138)

Al<l

In the equation (140) the coefficients, the indices of which are
even numbers, are preceded by a negative sign. In order tb confirm the

—

condition (52), it is necessary that AK > 0 when K is even and that
AK<. when K Is odd. In the study of equation (138) one sees that In

—

this last case the correlation curve ~A(p) will intersect the p-axis.

For determination of the other conditions which must-be set up in order
to make the equation (138) really a correlation law, one tist first know ‘-”
the value of K and then apply the equation (52). .
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The simplest law of the form given by (138) is obtained when
K=O. One then has Gauss’ curve which has already been studied, equa-

tion (118).

(a) When in a flowwf homogeneous and isotropic turbulence the
longitudinal-correction law is of the form

(142)

one finds, with application of eq~tion (60)> the transverse-correction
law

which is a law of a form similar to (142) but with other coefficients.

The equation (62) gives for the dimension of the smallest eddies
responsible for the energy dissipation by turbulent viscosity the
relationship

‘x= c/-

(b) To the transverse-correlation law of

(144)

the form

(145)

corresponds in a flow of homogeneous and isotropic turbulence the longi-
tudinal correlation \

and the equation (62) gives

‘y=+% (147)
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19. Law gA(p) =
[ 1
1 + Al c2p2 exp(-c2p2)

When in equation (138) K = 1, one obtains the correlation law

Rd(P) = [
1+ Al c2p~em(-c2p2)

to which corresponds the spectral function

1. !fjexp(-$)‘44=74+*-Flea

(148)

(149)

and where

C=*F++AJ

We have already shown that the condition Al< 1 must be verified

whatever the value of K may be. On the other hand, in the actual case, -
with K being odd, it is necessary that AK = Al< O. Finally, the

inequality (52), applied to the spectral function (149), gives Al> -2

whence there results the condition

-2< Al< O -.

The correlation curve always intersects the p-axis. The various
characteristics of this curve
given by the relationships

2
.-1

Po Al C2

as well as those of the spectral curve are

‘A ()
= erf Cpo -~AlpOeq (-C2P2)

&in = Al em
()

1 - Al
Al

()
=-&exp--&-~
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& = *(1 +%)

75

(1) (ap)

[1‘4 =Z$#+’1-F+A~+A.c2~:]e~(-
The figures 78 and 79 represent the correlation curves and the

spectral curves for some values of A, and the figures 80 to 83 give the
values of the expressions calculated above.

(a) To the longitudinal-correlation law

there corresponds in a
transverse-correlation

.
qy(ll) =

1+ ‘1 +=xd-c’~’)[ (150)

of hmnogeneous and isotropic turbulence the

(151)

(b) When in a flow of homogeneous and isotropic turbulence, the
transverse-correlation law is of the form

(152)gy(q) = [ .+ Al c’q~exp(-c’q’)

the longitudinal-correlation law is

{[ 1 (,)}Iix(.g,) =*2 l+Al - l+ A1+4A1 c’~’ exp -C252 (153)

20. Law fiA(p) =
[ 4 !l=+’~’)
l+Alc2p’+A2c,

When in the eqyation (138) K = 2, one obtains the correlation law

~A(,) =
[

4 ~exp(-c’p’)1+’1.’,’+’2., (154)

to which corresponds the spectral function
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.

[

1 l+~A+~A Q2 2 Q4
‘?A(QfJ)=~ 2 1 4 2 ( ) 1

- Al+3A2g+A —
, 16c4

and where

The different characteristics of these curves are

XA = erf(cp~)

A

given by the

P02 = -Al * -

2C2A2

[
2 P)po exp(-c2p02)]

; A1+; %+%CPO-—

=2 - Al t @A2 - A1)2 - 4A2(1 - ‘2)

relatIonships

2A2C2

/(Al + 5A2)2 - A2 (4 + @l + 1X2)
.

Applying the conditions (26) to (34), one finds for the coeffi-
cients Al, A2 the limits indicated in figure 84. ..~e figures 85 and 86

.

give the correlation curves and the spectral curves, and the figures 87
to 90 represent the values of some characteristics of these curves.
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CHAPTERVI

TURBULENCE SPECTRA

21. Equations Suitable for Representing

We have shown in the first two chapters

77

a Turbulence Spectrum

what the conditions are which
must be imposed on an equation so that It can represent a turbulence
spectrum. In the following three chapters we have given the spectral func-
tions tiich correspond to a certain number of correlation laws. One can
evidently perform the opposite operation by first assuming the equation of
the spectrum and then calculating the correlation law. The simplest eqm-
tions one can propose for representation of

Q =A exp(-BQ2) 9= A
1 + Bf12

See equtions (78) and (IJ8). Writing
spectra, one will have

the spectra are

~ =A exp(-BIQi)

them for the G. I. Taylor

@d ‘:e+$~’)
and

Qt (QJ=

Iinposingthe conditions (52)
third

and the corresponding

21
z

1+#

(156)

(157)

and (%) to (56), one finds for the

w-t) =%+-: 1%1)

correlation law is written

F&(.). :2 a

l+~T

In figure 91 we compare these three spectral
ure 92 the correlation curves which correspond to

(158) ‘

(159)

curves, and in fig-
them.
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22. ~erimental Spectra
1.

For representing an e~erimental spectrum by an e–qwtion, one may
employ the same methods as for the correlation IE.ws. Notably, one may
search for this equation by trial and error after having superimposed
the experimental points on the spectral curves drawn in the numerous
figures given in this report.

When the correlation length is not Wow and the experiment, con.
sequently, does not give the curve ~(~) but only ft(u), one plots,

in this case, on logarithmic coordinates Uf(u) as a function of $#
u

and then superimposes it on the curves ~t(%~, not- that

uf@#=q@t)%

Figure 93 represents the results of the experiment NPL.ka as well
as the spectral curve corresponding to the equation (129) where A = 0.6
and P = 0.15. It should be noted that, in representing the correlation
curve (128) corresponding to this spectrum, one will obtain a curve which
does not represent the points of the experiment NPL.lbl Thus, it is pos-

.

sible to show that the verification of the G. 1. Taylor equations of
which we have spoken in chapter 1, section 3 is not exact. This indicates “
how difficult it is to make verifications of this type.

.

.
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CHAPTER VII

CONCLUSIONS

1. There is much confusion regarding the numerous correlation coef-
ficients and spectra studied by the various authors. We hope to have
shown the difference between these diverse factors by the use of appro-
priate notations. These notations may seem relatively complicated but
we are of the opinion that one must not shy away from a complicated nota-
tion which may make the ideas clearer.

2. By studying homogeneous turbulence for which, moreover, the time
averages of the turbulent velocity are equal to the space averages, we
show that the correlation coefficients between the simultaneous turbulent
velocities at two points placed along a straight line of given direction
and a given distance apart are the same whether the study is carried out
in the Euler or in the Iagrange system.

3. We introduce in this report what we call the longitudinal spectrum
of turbulence which is obtained by harmonic analysis of the curve repre-
senting the components of the simultaneous turbulent velocities u’ along
a straight line para12el to the direction of the mean velocity. The trans-
verse spectrum is obtained by study of the simultaneous u’ along a
straight line perpendicular to the direction of the main velocity.

4. In the study of the equations of G. I. Taylor which establish the
correlation between the simultaneous U* and the spectrum measured at
the fixed point (ref. 7), we show that there exists a coefficient the
value of which may serve as a criterion for the legitimacy of employing
these equations. This coefficient

must be very small; only then the G. I. Taylor equations can be considered
exact.

5. We give several important equations derived from I&*m”n’s law for
a flow of homogeneous and isotropic turbulence.

6. The representation of the correlation laws and the spectra by
&pirical equations may be of very great service. We made a very large
number of applications to the expertiental results, especially regarding
the correlation curve. When the equation which represents the longitudinal-
correlation curve is given, one may easily obtain the transverse-correlation
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curve by applying K&&n’s law, and if one
for the two curves, one can verify whether

NACA TM 1436

has the experimental pOintS _
the flow in which these tests .

have been made is homogeneous and-isotropic. On the other hand, one can
rapidly calculate the’turbulence spectrum by making a Fourier transform.
By the ssne method, on the basis of the transverse-correlationlaw or of
the spectrum, one can study other characteristics of the turbulence.

7. The functions of the form

RA(r) =

are generally more satisfactory
curves than the functions

RA(r) =

e~(-Klrl)q(r)

for representation of the correlation

exp(-K’r2)~(r)

Gne succeeds in a very good representation of several results, employing
only two arbitrary coefficients in these functions.

8. The application of Hermite polynomials (ref. “~)to the representa-
tion of experimental correlation curves seems to be rather difficult since
it is necessary for the representation of an experimental curve to choose
more than two arbitrary factors.

Translated by Mary L. Mahler
National Advisory Committee
for Aeronautics

.-

.
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